面試官:如何實現(xiàn)大模型的連續(xù)對話?
所有的大模型本身是不進行信息存儲的,也不提供連續(xù)對話功能,所以想要實現(xiàn)連續(xù)對話功能需要開發(fā)者自己寫代碼才能實現(xiàn)。那怎么才能實現(xiàn)大模型的連續(xù)對話功能呢?
大模型連續(xù)對話功能不同的框架實現(xiàn)也是不同的,以行業(yè)使用最多的 Java AI 框架 Spring AI 和 Spring AI Alibaba 為例,給大家演示一下它們連續(xù)對話是如何實現(xiàn)的。
1.SpringAI連續(xù)對話實現(xiàn)
Spring AI 以 MySQL 數(shù)據(jù)庫為例,我們來實現(xiàn)一下它的連續(xù)對話功能。
“
PS:我們只有先講對話存儲起來,才能實現(xiàn)連續(xù)對話功能,所以我們需要借助數(shù)據(jù)庫存儲來連續(xù)對話。
(1)準備工作
創(chuàng)建表:
CREATE TABLE chat_message (
id BIGINT AUTO_INCREMENT PRIMARY KEY,
conversation_id VARCHAR(255) NOT NULL,
role VARCHAR(50) NOT NULL,
context TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;添加數(shù)據(jù)庫和 MyBatisPlus 依賴:
<dependency>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-spring-boot3-starter</artifactId>
<version>3.5.11</version>
</dependency>
<dependency>
<groupId>com.mysql</groupId>
<artifactId>mysql-connector-j</artifactId>
<scope>runtime</scope>
</dependency>設置配置文件:
spring:
datasource:
url:jdbc:mysql://127.0.0.1:3306/testdb?characterEncoding=utf8
username:root
password:12345678
driver-class-name:com.mysql.cj.jdbc.Driver
# 配置打印 MyBatis 執(zhí)行的 SQL
mybatis-plus:
configuration:
log-impl:org.apache.ibatis.logging.stdout.StdOutImpl
# 配置打印 MyBatis 執(zhí)行的 SQL
logging:
level:
com:
ai:
deepseek:debug編寫實體類:
import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Getter;
import lombok.Setter;
import java.io.Serializable;
import java.util.Date;
@Getter
@Setter
@TableName("chat_message")
publicclass ChatMessageDO implements Serializable {
privatestaticfinallong serialVersionUID = 1L;
@TableId(value = "id", type = IdType.AUTO)
private Long id;
private String conversationId;
private String role;
private String context;
private Date createdAt;
}編寫 Mapper:
import com.ai.chat.entity.ChatMessageDO;
import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import org.apache.ibatis.annotations.Mapper;
@Mapper
public interface ChatMessageMapper extends BaseMapper<ChatMessageDO> {
}(2)自定義ChatMemory類
自定義的 ChatMemory 實現(xiàn)類,將對話記錄存儲到 MySQL:
import com.ai.deepseek.entity.ChatMessageDO;
import com.ai.deepseek.mapper.ChatMessageMapper;
import com.baomidou.mybatisplus.core.conditions.query.LambdaQueryWrapper;
import org.springframework.ai.chat.memory.ChatMemory;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import java.util.List;
import java.util.stream.Collectors;
@Component
publicclass MySQLChatMemory implements ChatMemory {
@Autowired
private ChatMessageMapper repository;
@Override
public void add(String conversationId, Message message) {
ChatMessageDO entity = new ChatMessageDO();
entity.setConversationId(conversationId);
entity.setRole(message.getMessageType().name());
entity.setContext(message.getText());
repository.insert(entity);
}
@Override
public void add(String conversationId, List<Message> messages) {
messages.forEach(message -> add(conversationId, message));
}
@Override
public List<Message> get(String conversationId, int lastN) {
LambdaQueryWrapper<ChatMessageDO> queryWrapper = new LambdaQueryWrapper<>();
queryWrapper.eq(ChatMessageDO::getConversationId, conversationId);
// queryWrapper.orderByDesc(ChatMessageDO::getId);
return repository.selectList(queryWrapper)
.stream()
.limit(lastN)
.map(e -> new UserMessage(e.getContext()))
.collect(Collectors.toList());
}
@Override
public void clear(String conversationId) {
LambdaQueryWrapper<ChatMessageDO> queryWrapper = new LambdaQueryWrapper<>();
queryWrapper.eq(ChatMessageDO::getConversationId, conversationId);
repository.delete(queryWrapper);
}
}(3)代碼調(diào)用
編寫代碼測試歷史對話保存到 MySQL 的功能:
import com.ai.deepseek.component.MySQLChatMemory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.client.advisor.MessageChatMemoryAdvisor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
@RestController
@RequestMapping("/multi")
publicclass MultiChatController {
@Autowired
private ChatClient chatClient;
@Autowired
private MySQLChatMemory chatMemory;
@RequestMapping("/chat")
public Flux<String> chat(@RequestParam("msg") String msg,
@RequestParam(defaultValue = "default") String sessionId) {
// 添加MessageChatMemoryAdvisor,自動管理上下文
MessageChatMemoryAdvisor advisor =
new MessageChatMemoryAdvisor(chatMemory, sessionId, 10); // 保留最近5條歷史
return chatClient.prompt()
.user(msg)
.advisors(advisor) // 關(guān)鍵:注入記憶管理
.stream()
.content();
}
}以上程序執(zhí)行結(jié)果如下:

2.SpringAIAlibaba實現(xiàn)連續(xù)對話
Spring AI Alibaba 連續(xù)對話的實現(xiàn)就簡單很多了,因為它內(nèi)置了 MySQL 和 Redis 的連續(xù)對話存儲方式,接下來以 Redis 為例演示 SAA 的連續(xù)對話實現(xiàn),它的實現(xiàn)步驟如下:
- 添加依賴。
- 設置配置文件,配置 Redis 連接信息。
- 添加 Redis 配置類,注入 RedisChatMemoryRepository 對象。
- 配置 ChatClient 實現(xiàn)連續(xù)對話。
具體實現(xiàn)如下。
(1)添加依賴
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-memory-redis</artifactId>
</dependency>(2)設置配置文件
設置配置文件,配置 Redis 連接信息:
spring:
ai:
memory:
redis:
host: localhost
port: 6379
timeout: 5000(3)添加Redis配置類
添加 Redis 配置類,注入 RedisChatMemoryRepository 對象,實現(xiàn) Redis 自定義存儲器注入:
import com.alibaba.cloud.ai.memory.redis.RedisChatMemoryRepository;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
publicclass RedisMemoryConfig {
@Value("${spring.ai.memory.redis.host}")
private String redisHost;
@Value("${spring.ai.memory.redis.port}")
privateint redisPort;
// @Value("${spring.ai.memory.redis.password}")
// private String redisPassword;
@Value("${spring.ai.memory.redis.timeout}")
privateint redisTimeout;
@Bean
public RedisChatMemoryRepository redisChatMemoryRepository() {
return RedisChatMemoryRepository.builder()
.host(redisHost)
.port(redisPort)
// 若沒有設置密碼則注釋該項
// .password(redisPassword)
.timeout(redisTimeout)
.build();
}
}(4)配置ChatClient實現(xiàn)連續(xù)對話
import com.alibaba.cloud.ai.memory.redis.RedisChatMemoryRepository;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.client.advisor.MessageChatMemoryAdvisor;
import org.springframework.ai.chat.memory.MessageWindowChatMemory;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
importstatic org.springframework.ai.chat.memory.ChatMemory.CONVERSATION_ID;
@RestController
@RequestMapping("/redis")
publicclass RedisMemoryController {
privatefinal ChatClient chatClient;
privatefinalint MAXMESSAGES = 10;
privatefinal MessageWindowChatMemory messageWindowChatMemory;
public RedisMemoryController(ChatModel dashscopeChatModel,
RedisChatMemoryRepository redisChatMemoryRepository) {
this.messageWindowChatMemory = MessageWindowChatMemory.builder()
.chatMemoryRepository(redisChatMemoryRepository)
.maxMessages(MAXMESSAGES)
.build();
this.chatClient = ChatClient.builder(dashscopeChatModel)
.defaultAdvisors(
MessageChatMemoryAdvisor.builder(messageWindowChatMemory)
.build()
)
.build();
}
@GetMapping("/call")
public String call(String msg, String cid) {
return chatClient.prompt(msg)
.advisors(
a -> a.param(CONVERSATION_ID, cid)
)
.call().content();
}
}小結(jié)
通過以上代碼大家也可以看出來,使用 Spring AI 實現(xiàn)連續(xù)對話是比較復雜的,需要自己實現(xiàn)數(shù)據(jù)庫增刪改查的代碼,并且重寫 ChatMemory 才能實現(xiàn)連續(xù)對話功能;而 Spring AI Alibaba 因為內(nèi)置了連續(xù)對話的多種實現(xiàn)(Redis 和其他數(shù)據(jù)庫),所以只需要簡單配置就可以實現(xiàn)了。































