偷偷摘套内射激情视频,久久精品99国产国产精,中文字幕无线乱码人妻,中文在线中文a,性爽19p

并發(fā)編程線程池限流的哲學(xué)

開發(fā)
針對(duì)線程池拒絕策略的設(shè)計(jì)和使用更多是考察讀者對(duì)于線程池源碼的理解和使用經(jīng)驗(yàn),這里筆者僅在思路上給出示例,當(dāng)然實(shí)現(xiàn)上也存在很多不完美的地方。

收到不少讀者反饋,其中有這幾道關(guān)于線程池的問題:

  • 在進(jìn)行線程池設(shè)計(jì)時(shí),如何選擇拒絕策略?
  • 如果不允許丟棄任務(wù)任務(wù),應(yīng)該選擇哪個(gè)拒絕策略?
  • 使用CallerRunsPolicy這個(gè)拒絕策略有什么風(fēng)險(xiǎn)?有沒有更好的處理方式呢?

一、詳解拒絕策略常見問題

1. 線程池是如何工作的

我們先來復(fù)習(xí)一下線程池的工作流程,每次任務(wù)提交時(shí),線程池都會(huì)嘗試將任務(wù)提交到核心線程上,如果線程數(shù)小于核心線程數(shù),線程池就會(huì)添加工作線程并執(zhí)行當(dāng)前任務(wù)。 若核心線程都處于工作狀態(tài),這就表明當(dāng)前線程池有些忙碌,那么這些無(wú)法及時(shí)處理的任務(wù)就會(huì)提交到阻塞任務(wù)隊(duì)列中。 隨著任務(wù)的遞增,任務(wù)隊(duì)列無(wú)法容納最新的任務(wù),線程池就會(huì)認(rèn)為現(xiàn)處于高峰期,便臨時(shí)增加應(yīng)急線程處理任務(wù)。隨著任務(wù)逐步處理完成,線程在指定時(shí)間內(nèi)沒有要處理的任務(wù),這些線程也就會(huì)依次退出。

圖片圖片

對(duì)應(yīng)我們也給出ThreadPoolExecutor提交任務(wù)的execute方法的源碼:

public void execute(Runnable command) {
  //任務(wù)判空
        if (command == null)
            throw new NullPointerException();
        //查看當(dāng)前運(yùn)行的線程數(shù)量
        int c = ctl.get();
     //若小于核心線程則直接添加一個(gè)工作線程并執(zhí)行任務(wù)
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        //如果線程數(shù)等于核心線程數(shù)則嘗試將任務(wù)入隊(duì)
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        //入隊(duì)失敗,調(diào)用addWorker參數(shù)為false,嘗試創(chuàng)建應(yīng)急線程處理突發(fā)任務(wù)
        else if (!addWorker(command, false))
         //如果創(chuàng)建應(yīng)急線程失敗,說明當(dāng)前線程數(shù)已經(jīng)大于最大線程數(shù),這個(gè)任務(wù)只能拒絕了
            reject(command);
    }

上文提到了應(yīng)急線程長(zhǎng)時(shí)間沒有要處理的任務(wù)就會(huì)被銷毀的邏輯,這里我們也簡(jiǎn)單的介紹一下,首先在線程池中每一個(gè)線程是以Worker的形式封裝呈現(xiàn),其本質(zhì)就是對(duì)Thread的封裝,Worker啟動(dòng)后會(huì)調(diào)用run方法調(diào)用runWorker方法輪詢處理任務(wù):

private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        
        final Thread thread;
       
  
        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }
 
 //......
}

查看runWorker方法,一旦在規(guī)定時(shí)間內(nèi)getTask沒有拿到任務(wù)就會(huì)退出循環(huán),直接通過processWorkerExit結(jié)束這個(gè)工作線程:

final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
         //對(duì)應(yīng)時(shí)間內(nèi)沒有拿到task則退出循環(huán)
            while (task != null || (task = getTask()) != null) {
               //略
            }
            completedAbruptly = false;
        } finally {
         //結(jié)束這個(gè)工作線程
            processWorkerExit(w, completedAbruptly);
        }
    }

自此,我們將線程池整體工作流程簡(jiǎn)單的梳理完畢。

2. 拒絕策略的選擇

先來說說第一道題,關(guān)于拒絕策略的選擇,我們不妨直接查看RejectedExecutionHandler 子類的源碼進(jìn)行說明。 先來看看CallerRunsPolicy ,該拒絕策略會(huì)直接用當(dāng)前調(diào)用者執(zhí)行當(dāng)前任務(wù):

public static class CallerRunsPolicy implements RejectedExecutionHandler {
       
        public CallerRunsPolicy() { }

     
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
             //直接基于當(dāng)前線程調(diào)用run方法執(zhí)行任務(wù)
                r.run();
            }
        }
    }

然后就是AbortPolicy,也很簡(jiǎn)單,直接拋異常:

public static class AbortPolicy implements RejectedExecutionHandler {
        /**
         * Creates an {@code AbortPolicy}.
         */
        public AbortPolicy() { }

      
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }

DiscardPolicy 則是什么也不做,這也就意味著這個(gè)任務(wù)沒有任務(wù)處理,等同于丟棄:

public static class DiscardPolicy implements RejectedExecutionHandler {
        /**
         * Creates a {@code DiscardPolicy}.
         */
        public DiscardPolicy() { }

       //不做任何事情任務(wù)直接丟棄
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        }
    }

最后一個(gè)就是DiscardOldestPolicy ,該策略會(huì)將隊(duì)首部任務(wù)丟棄,然后嘗試將再次execute這個(gè)任務(wù):

public static class DiscardOldestPolicy implements RejectedExecutionHandler {
      
        public DiscardOldestPolicy() { }

       //丟掉隊(duì)首的任務(wù),然后往線程池提交當(dāng)前任務(wù)
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                e.getQueue().poll();
                e.execute(r);
            }
        }
    }

不同拒絕策略都有著不同的使用場(chǎng)景:

  • 如果我們的任務(wù)不算耗時(shí)還要保證能夠被執(zhí)行,那么CallerRunsPolicy則是第一選擇。
  • 若突增大量任務(wù)導(dǎo)致無(wú)法及時(shí)處理從業(yè)務(wù)的角度認(rèn)為是異常的話,那么我們則建議拋出AbortPolicy讓開發(fā)介入及時(shí)調(diào)優(yōu)處理,前提是當(dāng)前業(yè)務(wù)正處于業(yè)務(wù)提測(cè)階段。
  • 對(duì)于那些需要提交實(shí)時(shí)性消息的監(jiān)控型任務(wù),那么新提交的任務(wù)勢(shì)必實(shí)時(shí)性會(huì)由于更早的任務(wù),這種場(chǎng)景使用DiscardOldestPolicy 即可。
  • 如果這些任務(wù)相較于系統(tǒng)可靠性來說,如果不是很重要,那么直接采用rejectedExecution丟棄任務(wù)即可。

3. 主流框架對(duì)于拒絕策略的選擇

只要繼承RejectedExecutionHandler 就可以實(shí)現(xiàn)相應(yīng)的拒絕策略,所以我們也不妨看看一些主流的框架是如何使用拒絕策略的吧。

tomcat線程池的拒絕策略也是拋出異常:

private static class RejectHandler implements RejectedExecutionHandler {
        @Override
        public void rejectedExecution(Runnable r,
                java.util.concurrent.ThreadPoolExecutor executor) {
            throw new RejectedExecutionException();
        }

    }

而Dubbo則相對(duì)友好一些,它會(huì)優(yōu)先打印一個(gè)日志,并告知異常堆棧信息,然后拋出異常:

public class AbortPolicyWithReport extends ThreadPoolExecutor.AbortPolicy {
   //......

    @Override
    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        String msg = String.format("Thread pool is EXHAUSTED!" +
                        " Thread Name: %s, Pool Size: %d (active: %d, core: %d, max: %d, largest: %d), Task: %d (completed: %d)," +
                        " Executor status:(isShutdown:%s, isTerminated:%s, isTerminating:%s), in %s://%s:%d!",
                threadName, e.getPoolSize(), e.getActiveCount(), e.getCorePoolSize(), e.getMaximumPoolSize(), e.getLargestPoolSize(),
                e.getTaskCount(), e.getCompletedTaskCount(), e.isShutdown(), e.isTerminated(), e.isTerminating(),
                url.getProtocol(), url.getIp(), url.getPort());
        logger.warn(msg);
        dumpJStack();
        throw new RejectedExecutionException(msg);
    }
    private void dumpJStack() {
       //省略實(shí)現(xiàn)
    }
}

Netty就相對(duì)穩(wěn)健一些,它的拒絕策略則是直接創(chuàng)建一個(gè)線程池以外的線程處理這些任務(wù),為了保證任務(wù)的實(shí)時(shí)處理,這種做法可能需要良好的硬件設(shè)備且臨時(shí)創(chuàng)建的線程無(wú)法做到準(zhǔn)確的監(jiān)控:

private static final class NewThreadRunsPolicy implements RejectedExecutionHandler {
    NewThreadRunsPolicy() {
        super();
    }
    public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
        try {
            final Thread t = new Thread(r, "Temporary task executor");
            t.start();
        } catch (Throwable e) {
            throw new RejectedExecutionException(
                    "Failed to start a new thread", e);
        }
    }
}

ActiveMq則是嘗試在指定的時(shí)效內(nèi)盡可能的爭(zhēng)取將任務(wù)入隊(duì),以保證最大交付:

new RejectedExecutionHandler() {
                @Override
                public void rejectedExecution(final Runnable r, final ThreadPoolExecutor executor) {
                    try {
                        executor.getQueue().offer(r, 60, TimeUnit.SECONDS);
                    } catch (InterruptedException e) {
                        throw new RejectedExecutionException("Interrupted waiting for BrokerService.worker");
                    }
                    throw new RejectedExecutionException("Timed Out while attempting to enqueue Task.");
                }
            });

4. CallerRunsPolicy存在的問題及解決對(duì)策

默認(rèn)情況下,我們都會(huì)為了保證任務(wù)不被丟棄都優(yōu)先考慮CallerRunsPolicy,這也是相對(duì)維穩(wěn)的做法,這種做法的隱患是假設(shè)走到CallerRunsPolicy的任務(wù)是個(gè)非常耗時(shí)的任務(wù),就會(huì)導(dǎo)致主線程就很卡死。

下面就是筆者通過主線程使用線程池的方法,該線程池限定了最大線程數(shù)為2還有阻塞隊(duì)列大小為1,這意味著第4個(gè)任務(wù)就會(huì)走到拒絕策略:

//創(chuàng)建線程池
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1,
                2,
                60,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<>(1),
                new ThreadPoolExecutor.CallerRunsPolicy());

        threadPoolExecutor.execute(() -> {
            log.info("核心線程執(zhí)行");
            ThreadUtil.sleep(1, TimeUnit.DAYS);
        });

        threadPoolExecutor.execute(() -> {
            log.info("任務(wù)入隊(duì)");
            ThreadUtil.sleep(1, TimeUnit.DAYS);
        });

        threadPoolExecutor.execute(() -> {
            log.info("應(yīng)急線程處理");
            ThreadUtil.sleep(1, TimeUnit.DAYS);
        });

        threadPoolExecutor.execute(() -> {
            log.info("CallerRunsPolicy task");
            ThreadUtil.sleep(1, TimeUnit.DAYS);
        });


        threadPoolExecutor.execute(() -> {
            log.info("因?yàn)橹骶€程卡住,無(wú)法被處理的任務(wù)");

        });

從輸出結(jié)果可以看出,因?yàn)镃allerRunsPolicy這個(gè)拒絕策略,導(dǎo)致耗時(shí)的任務(wù)用了主線程執(zhí)行,導(dǎo)致線程池阻塞,進(jìn)而導(dǎo)致后續(xù)任務(wù)無(wú)法及時(shí)執(zhí)行,嚴(yán)重的情況下很可能導(dǎo)致OOM:

2024-04-03 00:08:12.617  INFO 20804 --- [           main] com.sharkChili.ThreadPoolApplication     : 啟動(dòng)成功!!
2024-04-03 00:08:15.739  INFO 20804 --- [pool-1-thread-1] com.sharkChili.ThreadPoolApplication     : 核心線程執(zhí)行
2024-04-03 00:08:36.768  INFO 20804 --- [pool-1-thread-2] com.sharkChili.ThreadPoolApplication     : 應(yīng)急線程處理
2024-04-03 00:08:49.333  INFO 20804 --- [           main] com.sharkChili.ThreadPoolApplication     : CallerRunsPolicy task

我們從問題的本質(zhì)入手,調(diào)用者采用CallerRunsPolicy是希望所有的任務(wù)都能夠被執(zhí)行,按照筆者的經(jīng)驗(yàn),假如我們的場(chǎng)景是偶發(fā)這種突發(fā)場(chǎng)景,在內(nèi)存允許的情況下,我們建議增加阻塞隊(duì)列BlockingQueue的大小并調(diào)整堆內(nèi)存以容納更多的任務(wù),確保任務(wù)能夠被準(zhǔn)確執(zhí)行。

若當(dāng)前服務(wù)器內(nèi)存資源緊張,但我們配置線程池還為盡可能利用到CPU,我們建議調(diào)整線程中maximumPoolSize以保證盡可能壓榨CPU資源:

如果服務(wù)器資源以達(dá)到可利用的極限,這就意味我們要在設(shè)計(jì)策略上改變線程池的調(diào)度了,我們都知道,導(dǎo)致主線程卡死的本質(zhì)就是因?yàn)槲覀儾幌M魏我粋€(gè)任務(wù)被丟棄。換個(gè)思路,有沒有辦法既能保證任務(wù)不被丟棄且在服務(wù)器有余力時(shí)及時(shí)處理呢?

這里筆者提供的一種思路,即任務(wù)持久化,注意這里筆者更多強(qiáng)調(diào)的是思路而不是實(shí)現(xiàn),這里所謂的任務(wù)持久化,包括但不限于:

  • 設(shè)計(jì)一張任務(wù)表間任務(wù)存儲(chǔ)到MySQL數(shù)據(jù)庫(kù)中。
  • Redis緩存任務(wù)。
  • 將任務(wù)提交到消息隊(duì)列中。

筆者以方案一為例,通過繼承BlockingQueue實(shí)現(xiàn)一個(gè)混合式阻塞隊(duì)列,該隊(duì)列包含JDK自帶的ArrayBlockingQueue和一個(gè)自定義的隊(duì)列(數(shù)據(jù)表),通過魔改隊(duì)列的添加邏輯達(dá)到任務(wù)可以存入ArrayBlockingQueue或者數(shù)據(jù)表的目的。

如此一來,一旦我們的線程池中線程以達(dá)到滿載時(shí),我們就可以通過拒絕策略將最新任務(wù)持久化到MySQL數(shù)據(jù)庫(kù)中,等到線程池有了有余力處理所有任務(wù)時(shí),讓其優(yōu)先處理數(shù)據(jù)庫(kù)中的任務(wù)以避免"饑餓"問題。

這里筆者也給出混合隊(duì)列實(shí)現(xiàn)的核心源碼,即通過繼承BlockingQueue魔改了入隊(duì)和出隊(duì)的邏輯:

public class HybridBlockingQueue<E> implements BlockingQueue<E> {

  private Object mysqlLock = new Object();


    private ArrayBlockingQueue<E> arrayBlockingQueue;

    //構(gòu)造方法初始化阻塞隊(duì)列大小
    public HybridBlockingQueue(int maxSize) {
        arrayBlockingQueue = new ArrayBlockingQueue<>(maxSize);
    }


    

    /**
     * 線程池會(huì)調(diào)用的入隊(duì)方法
     * @param e
     * @return
     */
    @Override
    public boolean offer(E e) {
        return arrayBlockingQueue.offer(e);
    }


    /**
     * 取任務(wù)時(shí),優(yōu)先從數(shù)據(jù)庫(kù)中讀取最早的任務(wù)
     *
     * @return
     * @throws InterruptedException
     */
    @Override
    public E take() throws InterruptedException {

        synchronized (mysqlLock) {
            //從數(shù)據(jù)庫(kù)中讀取任務(wù),通過上鎖讀取避免重復(fù)消費(fèi)
            TaskInfoMapper taskMapper = SpringUtil.getBean(TaskInfoMapper.class);
            TaskInfo taskInfo = taskMapper.selectByExample(null).stream()
                    .findFirst()
                    .orElse(null);


            //若數(shù)據(jù)庫(kù)存在該任務(wù),則先刪后返回
            if (ObjUtil.isNotEmpty(taskInfo)) {
                taskMapper.deleteByPrimaryKey(taskInfo.getId());
                Task task = new Task(taskInfo.getData());
                return (E) task;
            }
        }

        //若數(shù)據(jù)庫(kù)沒有要處理的任務(wù)則從內(nèi)存中獲取
        return arrayBlockingQueue.poll();
    }

    /**
     * 帶有時(shí)間限制的任務(wù)獲取
     *
     * @param timeout
     * @param unit
     * @return
     * @throws InterruptedException
     */
    @Override
    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        //從數(shù)據(jù)庫(kù)中讀取任務(wù),通過上鎖讀取避免重復(fù)消費(fèi)
        synchronized (mysqlLock) {
            //從數(shù)據(jù)庫(kù)中讀取任務(wù),
            TaskInfoMapper taskMapper = SpringUtil.getBean(TaskInfoMapper.class);
            TaskInfo taskInfo = taskMapper.selectByExample(null).stream()
                    .findFirst()
                    .orElse(null);


            //若數(shù)據(jù)庫(kù)存在該任務(wù),則先刪后返回
            if (ObjUtil.isNotEmpty(taskInfo)) {
                taskMapper.deleteByPrimaryKey(taskInfo.getId());
                Task task = new Task(taskInfo.getData());
                return (E) task;
            }
        }
        //若數(shù)據(jù)庫(kù)沒有要處理的任務(wù)則從內(nèi)存中獲取
        return arrayBlockingQueue.poll(timeout, unit);

    }
 
 //......
}

接下來就是自定義拒絕策略了,很明顯我們的拒絕策略就叫持久化策略:

public class PersistentTaskPolicy implements RejectedExecutionHandler {

    @Override
    public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
  //任務(wù)入庫(kù)
        TaskInfoMapper taskMapper = SpringUtil.getBean(TaskInfoMapper.class);
        Task task = (Task) r;
        TaskInfo taskInfo = new TaskInfo();
        taskInfo.setData(JSONUtil.toJsonStr(task.getTaskInfo()));
        taskMapper.insertSelective(taskInfo);
    }
}

最終我們的使用示例如下:

ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1,
                2,
                60, TimeUnit.SECONDS,
                new HybridBlockingQueue<>(1),
                new PersistentTaskPolicy());

        threadPoolExecutor.execute(new Task("core thread"));

        threadPoolExecutor.execute(new Task("queueTask"));

        threadPoolExecutor.execute(new Task("max thread"));

        threadPoolExecutor.execute(new Task("insert into mysql database"));

最終我們的insert into mysql database因?yàn)榫€程池?zé)o法及時(shí)處理而走了我們自定義的拒絕策略而持久化入庫(kù),等待線程池中其他任務(wù)完成后被取出執(zhí)行:

2024-04-14 11:30:16.865  INFO 1052 --- [           main] com.sharkChili.PersistentTaskPolicy      : 任務(wù)持久化,taskInfo:{"data":"insert into mysql database"}
2024-04-14 11:31:08.516  INFO 1052 --- [pool-1-thread-2] com.sharkChili.Task                      : task execution completed,task info:max thread
2024-04-14 11:31:08.516  INFO 1052 --- [pool-1-thread-1] com.sharkChili.Task                      : task execution completed,task info:core thread
2024-04-14 11:32:08.563  INFO 1052 --- [pool-1-thread-1] com.sharkChili.Task                      : task execution completed,task info:queueTask
2024-04-14 11:32:08.563  INFO 1052 --- [pool-1-thread-2] com.sharkChili.Task                      : task execution completed,task info:insert into mysql database

二、更高維度的思考——線程池限流的藝術(shù)

上文我們以大篇幅的維度探討拒絕策略上優(yōu)化,需要保證準(zhǔn)確、有效執(zhí)行的任務(wù)能夠被線程池處理,且不會(huì)破壞程序的穩(wěn)定性,即提交的任務(wù)能夠被正確處理且線程池不會(huì)被打死。 這一點(diǎn),結(jié)合《Java并發(fā)編程實(shí)戰(zhàn)》的說法,我們也可以結(jié)合信號(hào)量Semaphore作為令牌,只有拿到令牌的線程才能將任務(wù)提交到線程池,保證線程池可以在單位時(shí)間內(nèi)按照我們?cè)O(shè)定的并發(fā)數(shù)執(zhí)行任務(wù):

通過利用信號(hào)量完成線程池的限流,保證任務(wù)可被執(zhí)行和工作線程池的穩(wěn)定性,即將性能瓶頸和程序穩(wěn)定性穩(wěn)定拋給更高層級(jí)提交任務(wù)的線程,尤其根據(jù)需要決定當(dāng)前任務(wù)是等待被線程池處理,還是直接中斷結(jié)束。

對(duì)應(yīng)的我們給出流控性質(zhì)的線程池代碼示例,讀者可參考筆者所說的思路和注釋了解一下落地思路:

public class RateLimitedExecutor {

    private final ExecutorService threadPool;
    private final Semaphore semaphore;

    //基于bound創(chuàng)建對(duì)應(yīng)并發(fā)度的線程池和流控令牌
    public RateLimitedExecutor(int bound) {
        this.threadPool = Executors.newFixedThreadPool(bound);
        this.semaphore = new Semaphore(bound, true);

    }


    public void submitTask(final Runnable command) throws InterruptedException {
        semaphore.acquire();
        Console.log("{}獲取令牌成功,執(zhí)行時(shí)間:{}", Thread.currentThread().getName(), DateUtil.now());
        try {
            threadPool.execute(() -> {
                try {
                    //執(zhí)行任務(wù)
                    command.run();
                } finally {
                    //線程執(zhí)行完成后釋放令牌
                    semaphore.release();
                }
            });
        } catch (RejectedExecutionException e) {//異常兜底
            semaphore.release();
        }
    }

}

對(duì)應(yīng)的我們也給出是使用示例,可以看到我們創(chuàng)建了流控為5的線程池,并創(chuàng)建10個(gè)并發(fā)線程執(zhí)行提交操作:

public static void main(String[] args) {
        RateLimitedExecutor executor = new RateLimitedExecutor(5);
        for (int i = 0; i < 10; i++) {
            new Thread(new Task("任務(wù)" + i, executor)).start();

        }
    }

    private static class Task implements Runnable {
        private final String threadName;
        private final RateLimitedExecutor executor;

        public Task(String threadName, RateLimitedExecutor executor) {
            this.threadName = threadName;
            this.executor = executor;
        }

        @SneakyThrows
        @Override
        public void run() {

            executor.submitTask(() -> {
                ThreadUtil.sleep(5000);
                Console.log("{}執(zhí)行任務(wù)完成", threadName);
            });
        }
    }

輸出結(jié)果如下,可以看到流控符合預(yù)期為5,同時(shí)我們也將程序穩(wěn)定性和性能瓶頸等各方面的壓力轉(zhuǎn)移給上層調(diào)用者,避免了非必要的拒絕策略處理,讓線程池專注于并發(fā)度的優(yōu)化:

Thread-1獲取令牌成功,執(zhí)行時(shí)間:2025-07-02 09:47:04
Thread-9獲取令牌成功,執(zhí)行時(shí)間:2025-07-02 09:47:04
Thread-5獲取令牌成功,執(zhí)行時(shí)間:2025-07-02 09:47:04
Thread-8獲取令牌成功,執(zhí)行時(shí)間:2025-07-02 09:47:04
Thread-3獲取令牌成功,執(zhí)行時(shí)間:2025-07-02 09:47:04
任務(wù)5執(zhí)行任務(wù)完成
任務(wù)9執(zhí)行任務(wù)完成
任務(wù)3執(zhí)行任務(wù)完成
任務(wù)1執(zhí)行任務(wù)完成
任務(wù)8執(zhí)行任務(wù)完成
Thread-6獲取令牌成功,執(zhí)行時(shí)間:2025-07-02 09:47:10
Thread-0獲取令牌成功,執(zhí)行時(shí)間:2025-07-02 09:47:10
Thread-7獲取令牌成功,執(zhí)行時(shí)間:2025-07-02 09:47:10
Thread-2獲取令牌成功,執(zhí)行時(shí)間:2025-07-02 09:47:10
Thread-4獲取令牌成功,執(zhí)行時(shí)間:2025-07-02 09:47:10
任務(wù)0執(zhí)行任務(wù)完成
任務(wù)4執(zhí)行任務(wù)完成
任務(wù)6執(zhí)行任務(wù)完成
任務(wù)7執(zhí)行任務(wù)完成
任務(wù)2執(zhí)行任務(wù)完成

三、小結(jié)

針對(duì)線程池拒絕策略的設(shè)計(jì)和使用更多是考察讀者對(duì)于線程池源碼的理解和使用經(jīng)驗(yàn),這里筆者僅在思路上給出示例,當(dāng)然實(shí)現(xiàn)上也存在很多不完美的地方,例如:

  • 如何保證持久化任務(wù)被可靠消費(fèi)。
  • 如何保證數(shù)據(jù)庫(kù)和內(nèi)存中任務(wù)的公平調(diào)度。
  • 持久化任務(wù)是先刪后返回還是先返回處理完成后刪除如何決定?

文章結(jié)束,希望對(duì)你有幫助。

責(zé)任編輯:趙寧寧 來源: 寫代碼的SharkChili
相關(guān)推薦

2017-01-10 13:39:57

Python線程池進(jìn)程池

2022-11-09 09:01:08

并發(fā)編程線程池

2024-12-27 09:08:25

2025-06-25 08:20:00

緩存Java并發(fā)編程

2020-12-08 08:53:53

編程ThreadPoolE線程池

2023-07-11 08:34:25

參數(shù)流程類型

2020-09-04 10:29:47

Java線程池并發(fā)

2023-06-07 13:49:00

多線程編程C#

2011-12-29 13:31:15

Java

2025-02-17 00:00:25

Java并發(fā)編程

2025-02-19 00:05:18

Java并發(fā)編程

2020-12-10 07:00:38

編程線程池定時(shí)任務(wù)

2019-09-16 08:45:53

并發(fā)編程通信

2024-10-06 14:37:52

2022-12-12 09:07:06

Redis并發(fā)限流

2024-01-23 09:07:29

Unix哲學(xué)工具

2024-11-06 09:39:52

2023-02-24 14:46:32

Java線程池編程

2016-08-18 13:56:33

AndroidExecutorsubmit

2025-01-10 07:10:00

點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)