Python并發(fā)編程之線程池/進(jìn)程池
引言
Python標(biāo)準(zhǔn)庫(kù)為我們提供了threading和multiprocessing模塊編寫(xiě)相應(yīng)的多線程/多進(jìn)程代碼,但是當(dāng)項(xiàng)目達(dá)到一定的規(guī)模,頻繁創(chuàng)建/銷(xiāo)毀進(jìn)程或者線程是非常消耗資源的,這個(gè)時(shí)候我們就要編寫(xiě)自己的線程池/進(jìn)程池,以空間換時(shí)間。但從Python3.2開(kāi)始,標(biāo)準(zhǔn)庫(kù)為我們提供了concurrent.futures模塊,它提供了ThreadPoolExecutor和ProcessPoolExecutor兩個(gè)類(lèi),實(shí)現(xiàn)了對(duì)threading和multiprocessing的進(jìn)一步抽象,對(duì)編寫(xiě)線程池/進(jìn)程池提供了直接的支持。
Executor和Future
concurrent.futures模塊的基礎(chǔ)是Exectuor,Executor是一個(gè)抽象類(lèi),它不能被直接使用。但是它提供的兩個(gè)子類(lèi)ThreadPoolExecutor和ProcessPoolExecutor卻是非常有用,顧名思義兩者分別被用來(lái)創(chuàng)建線程池和進(jìn)程池的代碼。我們可以將相應(yīng)的tasks直接放入線程池/進(jìn)程池,不需要維護(hù)Queue來(lái)操心死鎖的問(wèn)題,線程池/進(jìn)程池會(huì)自動(dòng)幫我們調(diào)度。
Future這個(gè)概念相信有java和nodejs下編程經(jīng)驗(yàn)的朋友肯定不陌生了,你可以把它理解為一個(gè)在未來(lái)完成的操作,這是異步編程的基礎(chǔ),傳統(tǒng)編程模式下比如我們操作queue.get的時(shí)候,在等待返回結(jié)果之前會(huì)產(chǎn)生阻塞,cpu不能讓出來(lái)做其他事情,而Future的引入幫助我們?cè)诘却倪@段時(shí)間可以完成其他的操作。關(guān)于在Python中進(jìn)行異步IO可以閱讀完本文之后參考我的Python并發(fā)編程之協(xié)程/異步IO。
p.s: 如果你依然在堅(jiān)守Python2.x,請(qǐng)先安裝futures模塊。
- pip install futures
 
使用submit來(lái)操作線程池/進(jìn)程池
我們先通過(guò)下面這段代碼來(lái)了解一下線程池的概念
- # example1.py
 - from concurrent.futures import ThreadPoolExecutor
 - import time
 - def return_future_result(message):
 - time.sleep(2)
 - return message
 - pool = ThreadPoolExecutor(max_workers=2) # 創(chuàng)建一個(gè)***可容納2個(gè)task的線程池
 - future1 = pool.submit(return_future_result, ("hello")) # 往線程池里面加入一個(gè)task
 - future2 = pool.submit(return_future_result, ("world")) # 往線程池里面加入一個(gè)task
 - print(future1.done()) # 判斷task1是否結(jié)束
 - time.sleep(3)
 - print(future2.done()) # 判斷task2是否結(jié)束
 - print(future1.result()) # 查看task1返回的結(jié)果
 - print(future2.result()) # 查看task2返回的結(jié)果
 
我們根據(jù)運(yùn)行結(jié)果來(lái)分析一下。我們使用submit方法來(lái)往線程池中加入一個(gè)task,submit返回一個(gè)Future對(duì)象,對(duì)于Future對(duì)象可以簡(jiǎn)單地理解為一個(gè)在未來(lái)完成的操作。在***個(gè)print語(yǔ)句中很明顯因?yàn)閠ime.sleep(2)的原因我們的future1沒(méi)有完成,因?yàn)槲覀兪褂胻ime.sleep(3)暫停了主線程,所以到第二個(gè)print語(yǔ)句的時(shí)候我們線程池里的任務(wù)都已經(jīng)全部結(jié)束。
- ziwenxie :: ~ » python example1.py
 - False
 - True
 - hello
 - world
 - # 在上述程序執(zhí)行的過(guò)程中,通過(guò)ps命令我們可以看到三個(gè)線程同時(shí)在后臺(tái)運(yùn)行
 - ziwenxie :: ~ » ps -eLf | grep python
 - ziwenxie 8361 7557 8361 3 3 19:45 pts/0 00:00:00 python example1.py
 - ziwenxie 8361 7557 8362 0 3 19:45 pts/0 00:00:00 python example1.py
 - ziwenxie 8361 7557 8363 0 3 19:45 pts/0 00:00:00 python example1.py
 
上面的代碼我們也可以改寫(xiě)為進(jìn)程池形式,api和線程池如出一轍,我就不羅嗦了。
- # example2.py
 - from concurrent.futures import ProcessPoolExecutor
 - import time
 - def return_future_result(message):
 - time.sleep(2)
 - return message
 - pool = ProcessPoolExecutor(max_workers=2)
 - future1 = pool.submit(return_future_result, ("hello"))
 - future2 = pool.submit(return_future_result, ("world"))
 - print(future1.done())
 - time.sleep(3)
 - print(future2.done())
 - print(future1.result())
 - print(future2.result())
 
下面是運(yùn)行結(jié)果
- ziwenxie :: ~ » python example2.py
 - False
 - True
 - hello
 - world
 - ziwenxie :: ~ » ps -eLf | grep python
 - ziwenxie 8560 7557 8560 3 3 19:53 pts/0 00:00:00 python example2.py
 - ziwenxie 8560 7557 8563 0 3 19:53 pts/0 00:00:00 python example2.py
 - ziwenxie 8560 7557 8564 0 3 19:53 pts/0 00:00:00 python example2.py
 - ziwenxie 8561 8560 8561 0 1 19:53 pts/0 00:00:00 python example2.py
 - ziwenxie 8562 8560 8562 0 1 19:53 pts/0 00:00:00 python example2.py
 
使用map/wait來(lái)操作線程池/進(jìn)程池
除了submit,Exectuor還為我們提供了map方法,和內(nèi)建的map用法類(lèi)似,下面我們通過(guò)兩個(gè)例子來(lái)比較一下兩者的區(qū)別。
使用submit操作回顧
- # example3.py
 - import concurrent.futures
 - import urllib.request
 - URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
 - def load_url(url, timeout):
 - with urllib.request.urlopen(url, timeouttimeout=timeout) as conn:
 - return conn.read()
 - # We can use a with statement to ensure threads are cleaned up promptly
 - with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
 - # Start the load operations and mark each future with its URL
 - future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
 - for future in concurrent.futures.as_completed(future_to_url):
 - url = future_to_url[future]
 - try:
 - data = future.result()
 - except Exception as exc:
 - print('%r generated an exception: %s' % (url, exc))
 - else:
 - print('%r page is %d bytes' % (url, len(data)))
 
從運(yùn)行結(jié)果可以看出,as_completed不是按照URLS列表元素的順序返回的。
- ziwenxie :: ~ » python example3.py
 - 'http://example.com/' page is 1270 byte
 - 'https://api.github.com/' page is 2039 bytes
 - 'http://httpbin.org' page is 12150 bytes
 
使用map
- # example4.py
 - import concurrent.futures
 - import urllib.request
 - URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
 - def load_url(url):
 - with urllib.request.urlopen(url, timeout=60) as conn:
 - return conn.read()
 - # We can use a with statement to ensure threads are cleaned up promptly
 - with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
 - for url, data in zip(URLS, executor.map(load_url, URLS)):
 - print('%r page is %d bytes' % (url, len(data)))
 
從運(yùn)行結(jié)果可以看出,map是按照URLS列表元素的順序返回的,并且寫(xiě)出的代碼更加簡(jiǎn)潔直觀,我們可以根據(jù)具體的需求任選一種。
- ziwenxie :: ~ » python example4.py
 - 'http://httpbin.org' page is 12150 bytes
 - 'http://example.com/' page is 1270 bytes
 - 'https://api.github.com/' page is 2039 bytes
 
第三種選擇wait
wait方法接會(huì)返回一個(gè)tuple(元組),tuple中包含兩個(gè)set(集合),一個(gè)是completed(已完成的)另外一個(gè)是uncompleted(未完成的)。使用wait方法的一個(gè)優(yōu)勢(shì)就是獲得更大的自由度,它接收三個(gè)參數(shù)FIRST_COMPLETED, FIRST_EXCEPTION 和ALL_COMPLETE,默認(rèn)設(shè)置為ALL_COMPLETED。
我們通過(guò)下面這個(gè)例子來(lái)看一下三個(gè)參數(shù)的區(qū)別
- from concurrent.futures import ThreadPoolExecutor, wait, as_completed
 - from time import sleep
 - from random import randint
 - def return_after_random_secs(num):
 - sleep(randint(1, 5))
 - return "Return of {}".format(num)
 - pool = ThreadPoolExecutor(5)
 - futures = []
 - for x in range(5):
 - futures.append(pool.submit(return_after_random_secs, x))
 - print(wait(futures))
 - # print(wait(futures, timeout=None, return_when='FIRST_COMPLETED'))
 
如果采用默認(rèn)的ALL_COMPLETED,程序會(huì)阻塞直到線程池里面的所有任務(wù)都完成。
ziwenxie :: ~ » python example5.py
DoneAndNotDoneFutures(done={
<Future at 0x7f0b06c9bc88 state=finished returned str>,
<Future at 0x7f0b06cbaa90 state=finished returned str>,
<Future at 0x7f0b06373898 state=finished returned str>,
<Future at 0x7f0b06352ba8 state=finished returned str>,
<Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set())
如果采用FIRST_COMPLETED參數(shù),程序并不會(huì)等到線程池里面所有的任務(wù)都完成。
- ziwenxie :: ~ » python example5.py
 - DoneAndNotDoneFutures(done={
 - <Future at 0x7f84109edb00 state=finished returned str>,
 - <Future at 0x7f840e2e9320 state=finished returned str>,
 - <Future at 0x7f840f25ccc0 state=finished returned str>},
 - not_done={<Future at 0x7f840e2e9ba8 state=running>,
 - <Future at 0x7f840e2e9940 state=running>})
 
思考題
寫(xiě)一個(gè)小程序?qū)Ρ萴ultiprocessing.pool(ThreadPool)和ProcessPollExecutor(ThreadPoolExecutor)在執(zhí)行效率上的差距,結(jié)合上面提到的Future思考為什么會(huì)造成這樣的結(jié)果。
【責(zé)任編輯:seeker TEL:(010)68476606】
















 
 
 














 
 
 
 