無需下游訓(xùn)練,Tip-Adapter大幅提升CLIP圖像分類準(zhǔn)確率

- 論文鏈接:https://arxiv.org/pdf/2207.09519.pdf
- 代碼鏈接:https://github.com/gaopengcuhk/Tip-Adapter
一.研究背景
對比性圖像語言預(yù)訓(xùn)練模型(CLIP)在近期展現(xiàn)出了強(qiáng)大的視覺領(lǐng)域遷移能力,可以在一個全新的下游數(shù)據(jù)集上進(jìn)行 zero-shot 圖像識別。為了進(jìn)一步提升 CLIP 的遷移性能,現(xiàn)有方法使用了 few-shot 的設(shè)置,例如 CoOp 和 CLIP-Adapter,即提供了少量下游數(shù)據(jù)集的訓(xùn)練數(shù)據(jù),使得 CLIP 能夠更好的針對不同的視覺場景做出調(diào)整。但是,這種額外的訓(xùn)練步驟會帶來不小的時間和空間資源開銷,一定程度上影響了 CLIP 固有的快速知識遷移能力。因此,我們提出了 Tip-Adapter,一種不需要額外下游訓(xùn)練并且能很大程度提升 CLIP 準(zhǔn)確率的 few-shot 圖像分類方法?;诖?,我們又提出了一種僅需要少量微調(diào)就能達(dá)到 state-of-the-art 性能的方案:Tip-Adapter-F,實現(xiàn)了效率和性能的最佳折中。如下表 1 所示,Tip-Adapter 不需要任何訓(xùn)練時間,即可以將 CLIP 在 ImageNet 數(shù)據(jù)集提升 + 1.7% 準(zhǔn)確率(Accuracy),而 Tip-Adapter-F 僅需要之前方案十分之一的訓(xùn)練時間(Epochs,Time),就可以實現(xiàn)現(xiàn)有最佳的分類性能。

表 1:不同方案在 ImageNet 數(shù)據(jù)集上 16-shot 的圖像分類準(zhǔn)確率和訓(xùn)練時間的比較
二.研究方法
1.Tip-Adapter
Tip-Adapter 的整體網(wǎng)絡(luò)結(jié)構(gòu)如下圖 1 所示,對于給定的 few-shot 訓(xùn)練數(shù)據(jù)集和標(biāo)簽,我們借助 CLIP 通過一個非訓(xùn)練的方案來構(gòu)建一個緩存模型(Cache Model),它存儲了來自下游訓(xùn)練數(shù)據(jù)的分類知識;在測試時,Tip-Adapter 通過將 Cache Model 的預(yù)測和原始 CLIP 的預(yù)測進(jìn)行線性加和,來得到更強(qiáng)的最終分類結(jié)果。
詳細(xì)的來說,我們使用 CLIP 預(yù)訓(xùn)練好的視覺編碼器(Visual Encoder)來提取 few-shot 訓(xùn)練集所有圖片的特征,作為 Cache Model 的 Keys;并且將對應(yīng)的圖片標(biāo)簽轉(zhuǎn)化為 one-hot 編碼的形式,作為 Cache Model 的 Values。這種 Key-Value Cache Model 的構(gòu)建方法由于使用的是已經(jīng)預(yù)訓(xùn)練好的 Visual Encoder,所以不需要任何訓(xùn)練開銷;并且考慮到 few-shot 訓(xùn)練集中,每一個類別只含有少量的圖片(1~16 shots),Cache Model 也幾乎不會占用額外的顯存開銷,參考表一中的 GPU Mem. 指標(biāo)。
對于一張測試圖片,我們首先會利用 CLIP 的 Visual Encoder 來得到它的特征,再將該特征視為 Query 去 Cache Model 中進(jìn)行下游 few-shot 數(shù)據(jù)的知識檢索。由于 Keys 也是由 CLIP 的 Visual Encoder 提取得倒,因此和測試圖片特征 Query 同源,我們可以直接計算它們之間的余弦相似度得倒一個 Key-Query 的鄰接矩陣,此矩陣可以看作是每一個對應(yīng) Value 的權(quán)重。因此,我們可以計算 Values 的加權(quán)和來得到該測試圖像通過檢索 Cache Model 得到的分類預(yù)測。除此之外,我們還可以通過將測試圖片特征和 CLIP 的 Textual Encoder 文本特征進(jìn)行匹配,來得到 CLIP 的 zero-shot 預(yù)測。通過將兩者進(jìn)行線性加權(quán)求和,我們得到了最終的分類預(yù)測,該預(yù)測既蘊含了 CLIP 預(yù)訓(xùn)練的圖像語言對比性知識,也結(jié)合了下游新數(shù)據(jù)集的 few-shot 知識,因此可以實現(xiàn)更強(qiáng)的圖像分類準(zhǔn)確率。
基于 Tip-Adapter 的網(wǎng)絡(luò)結(jié)構(gòu),我們可以進(jìn)一步將 Cache Model 中的 Keys 部分變?yōu)閷W(xué)習(xí)參數(shù),即可以通過訓(xùn)練來進(jìn)行更新,該方案為 Tip-Adapter-F。借助已經(jīng)構(gòu)建好的 Cache Model,Tip-Adapter-F 僅需要現(xiàn)有 CLIP-Adapter 十分之一的訓(xùn)練回合數(shù)和時間,就可以實現(xiàn)更高的性能,如表一所示。

圖 1:Tip-Adapter 和 Tip-Adapter-F 的網(wǎng)絡(luò)流程圖
2.Tip-Adapter 和現(xiàn)有方案的區(qū)別與聯(lián)系?
對比 CLIP-Adapter,如圖 2 所示,Tip-Adapter 存儲的 Keys 和 Values 其實可以分別對應(yīng)于 CLIP-Adapter 中 adapter 結(jié)構(gòu)的兩個線性層,只不過前者是不需要訓(xùn)練來構(gòu)建的,后者是隨機(jī)初始化,然后需要訓(xùn)練來學(xué)習(xí)最佳的參數(shù)。

圖 2:Tip-Adapter 相比于 CLIP-Adapter
對比現(xiàn)有的其他構(gòu)建 Cache Model 的方案,如圖 3 所示,Tip-Adapter 的 Cache Model 可以看作是一種多模態(tài)的視覺語言 Cache。因為 CLIP 的 Textual Encoder 輸出的特征可以看作是文本的 Key-Value,即相當(dāng)于測試圖片特征作為 Query,分別在視覺和文本的 Cache 中檢索知識,相對于現(xiàn)有的僅含視覺 Cache 的方案,Tip-Adapter 能夠利用多模態(tài)知識得到更強(qiáng)的識別性能。

圖 3:Tip-Adapter 相比于其他構(gòu)建 Cache Model 的方案
三.實驗結(jié)果
1. 在 ImageNet 的分類準(zhǔn)確率
圖 4 和表 2 比較了 Tip-Adapter、Tip-Adapter-F 和現(xiàn)有各個方案在 1、2、4、8、16 shots 的 few-shot 圖像分類準(zhǔn)確率;表 3 比較了 16-shot ImageNet 數(shù)據(jù)集上使用不同 CLIP 的 Visual Encoder 的準(zhǔn)確率比較。可見,我們的兩種方案都在資源開銷很小的情況下,達(dá)到了非常卓越的性能。


圖 4 和表 2:ImageNet 數(shù)據(jù)集上不同方法的 1~16-shot 圖像分類準(zhǔn)確率比較

表 5:16-shot ImageNet 上不同 CLIP 的 Visual Encoder 的圖像分類準(zhǔn)確率比較
2. 在另外 10 個圖像分類數(shù)據(jù)集
如圖 5 所示,我們提供了另外 10 個圖像分類數(shù)據(jù)集的準(zhǔn)確率比較結(jié)果,分別是 StandfordCars,UCF101,Caltech101,F(xiàn)lowers102,SUN397,DTD,EuroSAT,F(xiàn)GVCAircraft,OxfordPets 和 Food101。如圖所示,我們的 Tip-Adapter-F 均取得了最高的識別準(zhǔn)確率。


圖 5:另外 10 個數(shù)據(jù)集上不同方法的 1~16-shot 圖像分類準(zhǔn)確率比較
3. 領(lǐng)域泛化能力的測評
我們也測試了 Tip-Adapter 和 Tip-Adapter-F 在領(lǐng)域泛化(Domain Generalization)方面的表現(xiàn)。如表 6 所示,我們的兩種方案都表現(xiàn)出了很強(qiáng)的魯棒性以及特征遷移能力。

四.結(jié)論
本文提出了 Tip-Adapter,一種可以免于訓(xùn)練的將 CLIP 用于下游 few-shot 圖像分類的方案。Tip-Adapter 通過構(gòu)建一個 Key-Value Cache Model,來作為測試圖片 Query 的知識檢索庫,并通過融合 Cache Model 的預(yù)測和 CLIP 的 zero-shot 預(yù)測,來得到更強(qiáng)的識別性能。我們期望 Tip-Adapter 可以啟發(fā)更多預(yù)訓(xùn)練模型高效遷移的后續(xù)工作。

































