萬字詳解整個(gè)數(shù)據(jù)倉庫建設(shè)體系
本文轉(zhuǎn)載自微信公眾號(hào)「五分鐘學(xué)大數(shù)據(jù)」,作者園陌 。轉(zhuǎn)載本文請(qǐng)聯(lián)系五分鐘學(xué)大數(shù)據(jù)公眾號(hào)。
數(shù)據(jù)倉庫的基本概念數(shù)據(jù)倉庫概念:
英文名稱為Data Warehouse,可簡(jiǎn)寫為DW或DWH。數(shù)據(jù)倉庫的目的是構(gòu)建面向分析的集成化數(shù)據(jù)環(huán)境,為企業(yè)提供決策支持(Decision Support)。它出于分析性報(bào)告和決策支持目的而創(chuàng)建。
數(shù)據(jù)倉庫本身并不“生產(chǎn)”任何數(shù)據(jù),同時(shí)自身也不需要“消費(fèi)”任何的數(shù)據(jù),數(shù)據(jù)來源于外部,并且開放給外部應(yīng)用,這也是為什么叫“倉庫”,而不叫“工廠”的原因。
基本特征:
數(shù)據(jù)倉庫是面向主題的、集成的、非易失的和時(shí)變的數(shù)據(jù)集合,用以支持管理決策。
面向主題:
傳統(tǒng)數(shù)據(jù)庫中,最大的特點(diǎn)是面向應(yīng)用進(jìn)行數(shù)據(jù)的組織,各個(gè)業(yè)務(wù)系統(tǒng)可能是相互分離的。而數(shù)據(jù)倉庫則是面向主題的。主題是一個(gè)抽象的概念,是較高層次上企業(yè)信息系統(tǒng)中的數(shù)據(jù)綜合、歸類并進(jìn)行分析利用的抽象。在邏輯意義上,它是對(duì)應(yīng)企業(yè)中某一宏觀分析領(lǐng)域所涉及的分析對(duì)象。
集成性:
通過對(duì)分散、獨(dú)立、異構(gòu)的數(shù)據(jù)庫數(shù)據(jù)進(jìn)行抽取、清理、轉(zhuǎn)換和匯總便得到了數(shù)據(jù)倉庫的數(shù)據(jù),這樣保證了數(shù)據(jù)倉庫內(nèi)的數(shù)據(jù)關(guān)于整個(gè)企業(yè)的一致性。
數(shù)據(jù)倉庫中的綜合數(shù)據(jù)不能從原有的數(shù)據(jù)庫系統(tǒng)直接得到。因此在數(shù)據(jù)進(jìn)入數(shù)據(jù)倉庫之前,必然要經(jīng)過統(tǒng)一與綜合,這一步是數(shù)據(jù)倉庫建設(shè)中最關(guān)鍵、最復(fù)雜的一步,所要完成的工作有:
- 要統(tǒng)一源數(shù)據(jù)中所有矛盾之處,如字段的同名異義、異名同義、單位不統(tǒng)一、字長(zhǎng)不一致,等等。
- 進(jìn)行數(shù)據(jù)綜合和計(jì)算。數(shù)據(jù)倉庫中的數(shù)據(jù)綜合工作可以在從原有數(shù)據(jù)庫抽取數(shù)據(jù)時(shí)生成,但許多是在數(shù)據(jù)倉庫內(nèi)部生成的,即進(jìn)入數(shù)據(jù)倉庫以后進(jìn)行綜合生成的。
下圖說明一個(gè)保險(xiǎn)公司綜合數(shù)據(jù)的簡(jiǎn)單處理過程,其中數(shù)據(jù)倉庫中與“保險(xiǎn)” 主題有關(guān)的數(shù)據(jù)來自于多個(gè)不同的操作型系統(tǒng)。這些系統(tǒng)內(nèi)部數(shù)據(jù)的命名可能不同,數(shù)據(jù)格式也可能不同。把不同來源的數(shù)據(jù)存儲(chǔ)到數(shù)據(jù)倉庫之前,需要去除這些不一致。
數(shù)倉主題
非易失性(不可更新性)
數(shù)據(jù)倉庫的數(shù)據(jù)反映的是一段相當(dāng)長(zhǎng)的時(shí)間內(nèi)歷史數(shù)據(jù)的內(nèi)容,是不同時(shí)點(diǎn)的數(shù)據(jù)庫快照的集合,以及基于這些快照進(jìn)行統(tǒng)計(jì)、綜合和重組的導(dǎo)出數(shù)據(jù)。
數(shù)據(jù)非易失性主要是針對(duì)應(yīng)用而言。數(shù)據(jù)倉庫的用戶對(duì)數(shù)據(jù)的操作大多是數(shù)據(jù)查詢或比較復(fù)雜的挖掘,一旦數(shù)據(jù)進(jìn)入數(shù)據(jù)倉庫以后,一般情況下被較長(zhǎng)時(shí)間保留。數(shù)據(jù)倉庫中一般有大量的查詢操作,但修改和刪除操作很少。因此,數(shù)據(jù)經(jīng)加工和集成進(jìn)入數(shù)據(jù)倉庫后是極少更新的,通常只需要定期的加載和更新。
時(shí)變性
數(shù)據(jù)倉庫包含各種粒度的歷史數(shù)據(jù)。數(shù)據(jù)倉庫中的數(shù)據(jù)可能與某個(gè)特定日期、星期、月份、季度或者年份有關(guān)。數(shù)據(jù)倉庫的目的是通過分析企業(yè)過去一段時(shí)間業(yè)務(wù)的經(jīng)營(yíng)狀況,挖掘其中隱藏的模式。雖然數(shù)據(jù)倉庫的用戶不能修改數(shù)據(jù),但并不是說數(shù)據(jù)倉庫的數(shù)據(jù)是永遠(yuǎn)不變的。分析的結(jié)果只能反映過去的情況,當(dāng)業(yè)務(wù)變化后,挖掘出的模式會(huì)失去時(shí)效性。因此數(shù)據(jù)倉庫的數(shù)據(jù)需要更新,以適應(yīng)決策的需要。從這個(gè)角度講,數(shù)據(jù)倉庫建設(shè)是一個(gè)項(xiàng)目,更是一個(gè)過程。數(shù)據(jù)倉庫的數(shù)據(jù)隨時(shí)間的變化表現(xiàn)在以下幾個(gè)方面:
(1) 數(shù)據(jù)倉庫的數(shù)據(jù)時(shí)限一般要遠(yuǎn)遠(yuǎn)長(zhǎng)于操作型數(shù)據(jù)的數(shù)據(jù)時(shí)限。
(2) 操作型系統(tǒng)存儲(chǔ)的是當(dāng)前數(shù)據(jù),而數(shù)據(jù)倉庫中的數(shù)據(jù)是歷史數(shù)據(jù)。
(3) 數(shù)據(jù)倉庫中的數(shù)據(jù)是按照時(shí)間順序追加的,它們都帶有時(shí)間屬性。
1. 數(shù)據(jù)倉庫與數(shù)據(jù)庫的區(qū)別
數(shù)據(jù)庫與數(shù)據(jù)倉庫的區(qū)別實(shí)際講的是 OLTP 與 OLAP 的區(qū)別。
操作型處理,叫聯(lián)機(jī)事務(wù)處理 OLTP(On-Line Transaction Processing,),也可以稱面向交易的處理系統(tǒng),它是針對(duì)具體業(yè)務(wù)在數(shù)據(jù)庫聯(lián)機(jī)的日常操作,通常對(duì)少數(shù)記錄進(jìn)行查詢、修改。用戶較為關(guān)心操作的響應(yīng)時(shí)間、數(shù)據(jù)的安全性、完整性和并發(fā)支持的用戶數(shù)等問題。傳統(tǒng)的數(shù)據(jù)庫系統(tǒng)作為數(shù)據(jù)管理的主要手段,主要用于操作型處理,像Mysql,Oracle等關(guān)系型數(shù)據(jù)庫一般屬于OLTP。
分析型處理,叫聯(lián)機(jī)分析處理 OLAP(On-Line Analytical Processing)一般針對(duì)某些主題的歷史數(shù)據(jù)進(jìn)行分析,支持管理決策。
首先要明白,數(shù)據(jù)倉庫的出現(xiàn),并不是要取代數(shù)據(jù)庫。數(shù)據(jù)庫是面向事務(wù)的設(shè)計(jì),數(shù)據(jù)倉庫是面向主題設(shè)計(jì)的。數(shù)據(jù)庫一般存儲(chǔ)業(yè)務(wù)數(shù)據(jù),數(shù)據(jù)倉庫存儲(chǔ)的一般是歷史數(shù)據(jù)。
數(shù)據(jù)庫設(shè)計(jì)是盡量避免冗余,一般針對(duì)某一業(yè)務(wù)應(yīng)用進(jìn)行設(shè)計(jì),比如一張簡(jiǎn)單的User表,記錄用戶名、密碼等簡(jiǎn)單數(shù)據(jù)即可,符合業(yè)務(wù)應(yīng)用,但是不符合分析。數(shù)據(jù)倉庫在設(shè)計(jì)是有意引入冗余,依照分析需求,分析維度、分析指標(biāo)進(jìn)行設(shè)計(jì)。
數(shù)據(jù)庫是為捕獲數(shù)據(jù)而設(shè)計(jì),數(shù)據(jù)倉庫是為分析數(shù)據(jù)而設(shè)計(jì)。
以銀行業(yè)務(wù)為例。數(shù)據(jù)庫是事務(wù)系統(tǒng)的數(shù)據(jù)平臺(tái),客戶在銀行做的每筆交易都會(huì)寫入數(shù)據(jù)庫,被記錄下來,這里,可以簡(jiǎn)單地理解為用數(shù)據(jù)庫記賬。數(shù)據(jù)倉庫是分析系統(tǒng)的數(shù)據(jù)平臺(tái),它從事務(wù)系統(tǒng)獲取數(shù)據(jù),并做匯總、加工,為決策者提供決策的依據(jù)。比如,某銀行某分行一個(gè)月發(fā)生多少交易,該分行當(dāng)前存款余額是多少。如果存款又多,消費(fèi)交易又多,那么該地區(qū)就有必要設(shè)立ATM了。
顯然,銀行的交易量是巨大的,通常以百萬甚至千萬次來計(jì)算。事務(wù)系統(tǒng)是實(shí)時(shí)的,這就要求時(shí)效性,客戶存一筆錢需要幾十秒是無法忍受的,這就要求數(shù)據(jù)庫只能存儲(chǔ)很短一段時(shí)間的數(shù)據(jù)。而分析系統(tǒng)是事后的,它要提供關(guān)注時(shí)間段內(nèi)所有的有效數(shù)據(jù)。這些數(shù)據(jù)是海量的,匯總計(jì)算起來也要慢一些,但是,只要能夠提供有效的分析數(shù)據(jù)就達(dá)到目的了。
數(shù)據(jù)倉庫,是在數(shù)據(jù)庫已經(jīng)大量存在的情況下,為了進(jìn)一步挖掘數(shù)據(jù)資源、為了決策需要而產(chǎn)生的,它決不是所謂的“大型數(shù)據(jù)庫”。
2. 數(shù)據(jù)倉庫分層架構(gòu)
按照數(shù)據(jù)流入流出的過程,數(shù)據(jù)倉庫架構(gòu)可分為:源數(shù)據(jù)、數(shù)據(jù)倉庫、數(shù)據(jù)應(yīng)用
數(shù)據(jù)倉庫
數(shù)據(jù)倉庫的數(shù)據(jù)來源于不同的源數(shù)據(jù),并提供多樣的數(shù)據(jù)應(yīng)用,數(shù)據(jù)自下而上流入數(shù)據(jù)倉庫后向上層開放應(yīng)用,而數(shù)據(jù)倉庫只是中間集成化數(shù)據(jù)管理的一個(gè)平臺(tái)。
源數(shù)據(jù):此層數(shù)據(jù)無任何更改,直接沿用外圍系統(tǒng)數(shù)據(jù)結(jié)構(gòu)和數(shù)據(jù),不對(duì)外開放;為臨時(shí)存儲(chǔ)層,是接口數(shù)據(jù)的臨時(shí)存儲(chǔ)區(qū)域,為后一步的數(shù)據(jù)處理做準(zhǔn)備。
數(shù)據(jù)倉庫:也稱為細(xì)節(jié)層,DW層的數(shù)據(jù)應(yīng)該是一致的、準(zhǔn)確的、干凈的數(shù)據(jù),即對(duì)源系統(tǒng)數(shù)據(jù)進(jìn)行了清洗(去除了雜質(zhì))后的數(shù)據(jù)。
數(shù)據(jù)應(yīng)用:前端應(yīng)用直接讀取的數(shù)據(jù)源;根據(jù)報(bào)表、專題分析需求而計(jì)算生成的數(shù)據(jù)。
數(shù)據(jù)倉庫從各數(shù)據(jù)源獲取數(shù)據(jù)及在數(shù)據(jù)倉庫內(nèi)的數(shù)據(jù)轉(zhuǎn)換和流動(dòng)都可以認(rèn)為是ETL(抽取Extra, 轉(zhuǎn)化Transfer, 裝載Load)的過程,ETL是數(shù)據(jù)倉庫的流水線,也可以認(rèn)為是數(shù)據(jù)倉庫的血液,它維系著數(shù)據(jù)倉庫中數(shù)據(jù)的新陳代謝,而數(shù)據(jù)倉庫日常的管理和維護(hù)工作的大部分精力就是保持ETL的正常和穩(wěn)定。
那么為什么要數(shù)據(jù)倉庫進(jìn)行分層呢?
- 用空間換時(shí)間,通過大量的預(yù)處理來提升應(yīng)用系統(tǒng)的用戶體驗(yàn)(效率),因此數(shù)據(jù)倉庫會(huì)存在大量冗余的數(shù)據(jù);不分層的話,如果源業(yè)務(wù)系統(tǒng)的業(yè)務(wù)規(guī)則發(fā)生變化將會(huì)影響整個(gè)數(shù)據(jù)清洗過程,工作量巨大。
- 通過數(shù)據(jù)分層管理可以簡(jiǎn)化數(shù)據(jù)清洗的過程,因?yàn)榘言瓉硪徊降墓ぷ鞣值搅硕鄠€(gè)步驟去完成,相當(dāng)于把一個(gè)復(fù)雜的工作拆成了多個(gè)簡(jiǎn)單的工作,把一個(gè)大的黑盒變成了一個(gè)白盒,每一層的處理邏輯都相對(duì)簡(jiǎn)單和容易理解,這樣我們比較容易保證每一個(gè)步驟的正確性,當(dāng)數(shù)據(jù)發(fā)生錯(cuò)誤的時(shí)候,往往我們只需要局部調(diào)整某個(gè)步驟即可。
3. 數(shù)據(jù)倉庫元數(shù)據(jù)的管理
元數(shù)據(jù)(Meta Date),主要記錄數(shù)據(jù)倉庫中模型的定義、各層級(jí)間的映射關(guān)系、監(jiān)控?cái)?shù)據(jù)倉庫的數(shù)據(jù)狀態(tài)及ETL的任務(wù)運(yùn)行狀態(tài)。一般會(huì)通過元數(shù)據(jù)資料庫(Metadata Repository)來統(tǒng)一地存儲(chǔ)和管理元數(shù)據(jù),其主要目的是使數(shù)據(jù)倉庫的設(shè)計(jì)、部署、操作和管理能達(dá)成協(xié)同和一致。
元數(shù)據(jù)是數(shù)據(jù)倉庫管理系統(tǒng)的重要組成部分,元數(shù)據(jù)管理是企業(yè)級(jí)數(shù)據(jù)倉庫中的關(guān)鍵組件,貫穿數(shù)據(jù)倉庫構(gòu)建的整個(gè)過程,直接影響著數(shù)據(jù)倉庫的構(gòu)建、使用和維護(hù)。
- 構(gòu)建數(shù)據(jù)倉庫的主要步驟之一是ETL。這時(shí)元數(shù)據(jù)將發(fā)揮重要的作用,它定義了源數(shù)據(jù)系統(tǒng)到數(shù)據(jù)倉庫的映射、數(shù)據(jù)轉(zhuǎn)換的規(guī)則、數(shù)據(jù)倉庫的邏輯結(jié)構(gòu)、數(shù)據(jù)更新的規(guī)則、數(shù)據(jù)導(dǎo)入歷史記錄以及裝載周期等相關(guān)內(nèi)容。數(shù)據(jù)抽取和轉(zhuǎn)換的專家以及數(shù)據(jù)倉庫管理員正是通過元數(shù)據(jù)高效地構(gòu)建數(shù)據(jù)倉庫。
- 用戶在使用數(shù)據(jù)倉庫時(shí),通過元數(shù)據(jù)訪問數(shù)據(jù),明確數(shù)據(jù)項(xiàng)的含義以及定制報(bào)表。
- 數(shù)據(jù)倉庫的規(guī)模及其復(fù)雜性離不開正確的元數(shù)據(jù)管理,包括增加或移除外部數(shù)據(jù)源,改變數(shù)據(jù)清洗方法,控制出錯(cuò)的查詢以及安排備份等。
元數(shù)據(jù)可分為技術(shù)元數(shù)據(jù)和業(yè)務(wù)元數(shù)據(jù)。技術(shù)元數(shù)據(jù)為開發(fā)和管理數(shù)據(jù)倉庫的IT 人員使用,它描述了與數(shù)據(jù)倉庫開發(fā)、管理和維護(hù)相關(guān)的數(shù)據(jù),包括數(shù)據(jù)源信息、數(shù)據(jù)轉(zhuǎn)換描述、數(shù)據(jù)倉庫模型、數(shù)據(jù)清洗與更新規(guī)則、數(shù)據(jù)映射和訪問權(quán)限等。而業(yè)務(wù)元數(shù)據(jù)為管理層和業(yè)務(wù)分析人員服務(wù),從業(yè)務(wù)角度描述數(shù)據(jù),包括商務(wù)術(shù)語、數(shù)據(jù)倉庫中有什么數(shù)據(jù)、數(shù)據(jù)的位置和數(shù)據(jù)的可用性等,幫助業(yè)務(wù)人員更好地理解數(shù)據(jù)倉庫中哪些數(shù)據(jù)是可用的以及如何使用。
由上可見,元數(shù)據(jù)不僅定義了數(shù)據(jù)倉庫中數(shù)據(jù)的模式、來源、抽取和轉(zhuǎn)換規(guī)則等,而且是整個(gè)數(shù)據(jù)倉庫系統(tǒng)運(yùn)行的基礎(chǔ),元數(shù)據(jù)把數(shù)據(jù)倉庫系統(tǒng)中各個(gè)松散的組件聯(lián)系起來,組成了一個(gè)有機(jī)的整體。
數(shù)倉建模方法
數(shù)據(jù)倉庫的建模方法有很多種,每一種建模方法代表了哲學(xué)上的一個(gè)觀點(diǎn),代表了一種歸納、概括世界的一種方法。常見的有 范式建模法、維度建模法、實(shí)體建模法等,每種方法從本質(zhì)上將是從不同的角度看待業(yè)務(wù)中的問題。
1. 范式建模法(Third Normal Form,3NF)
范式建模法其實(shí)是我們?cè)跇?gòu)建數(shù)據(jù)模型常用的一個(gè)方法,該方法的主要由 Inmon 所提倡,主要解決關(guān)系型數(shù)據(jù)庫的數(shù)據(jù)存儲(chǔ),利用的一種技術(shù)層面上的方法。目前,我們?cè)陉P(guān)系型數(shù)據(jù)庫中的建模方法,大部分采用的是三范式建模法。
范式 是符合某一種級(jí)別的關(guān)系模式的集合。構(gòu)造數(shù)據(jù)庫必須遵循一定的規(guī)則,而在關(guān)系型數(shù)據(jù)庫中這種規(guī)則就是范式,這一過程也被稱為規(guī)范化。目前關(guān)系數(shù)據(jù)庫有六種范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、Boyce-Codd范式(BCNF)、第四范式(4NF)和第五范式(5NF)。
在數(shù)據(jù)倉庫的模型設(shè)計(jì)中,一般采用第三范式。一個(gè)符合第三范式的關(guān)系必須具有以下三個(gè)條件 :
- 每個(gè)屬性值唯一,不具有多義性 ;
- 每個(gè)非主屬性必須完全依賴于整個(gè)主鍵,而非主鍵的一部分 ;
- 每個(gè)非主屬性不能依賴于其他關(guān)系中的屬性,因?yàn)檫@樣的話,這種屬性應(yīng)該歸到其他關(guān)系中去。
根據(jù) Inmon 的觀點(diǎn),數(shù)據(jù)倉庫模型的建設(shè)方法和業(yè)務(wù)系統(tǒng)的企業(yè)數(shù)據(jù)模型類似。在業(yè)務(wù)系統(tǒng)中,企業(yè)數(shù)據(jù)模型決定了數(shù)據(jù)的來源,而企業(yè)數(shù)據(jù)模型也分為兩個(gè)層次,即主題域模型和邏輯模型。同樣,主題域模型可以看成是業(yè)務(wù)模型的概念模型,而邏輯模型則是域模型在關(guān)系型數(shù)據(jù)庫上的實(shí)例化。
2. 維度建模法(Dimensional Modeling)
維度模型是數(shù)據(jù)倉庫領(lǐng)域另一位大師Ralph Kimall所倡導(dǎo),他的《數(shù)據(jù)倉庫工具箱》是數(shù)據(jù)倉庫工程領(lǐng)域最流行的數(shù)倉建模經(jīng)典。維度建模以分析決策的需求出發(fā)構(gòu)建模型,構(gòu)建的數(shù)據(jù)模型為分析需求服務(wù),因此它重點(diǎn)解決用戶如何更快速完成分析需求,同時(shí)還有較好的大規(guī)模復(fù)雜查詢的響應(yīng)性能。
維度建模
典型的代表是我們比較熟知的星形模型(Star-schema),以及在一些特殊場(chǎng)景下適用的雪花模型(Snow-schema)。
維度建模中比較重要的概念就是 事實(shí)表(Fact table)和維度表(Dimension table)。其最簡(jiǎn)單的描述就是,按照事實(shí)表、維度表來構(gòu)建數(shù)據(jù)倉庫、數(shù)據(jù)集市。
目前在互聯(lián)網(wǎng)公司最常用的建模方法就是維度建模,稍后將重點(diǎn)講解。
3. 實(shí)體建模法(Entity Modeling)
實(shí)體建模法并不是數(shù)據(jù)倉庫建模中常見的一個(gè)方法,它來源于哲學(xué)的一個(gè)流派。從哲學(xué)的意義上說,客觀世界應(yīng)該是可以細(xì)分的,客觀世界應(yīng)該可以分成由一個(gè)個(gè)實(shí)體,以及實(shí)體與實(shí)體之間的關(guān)系組成。那么我們?cè)跀?shù)據(jù)倉庫的建模過程中完全可以引入這個(gè)抽象的方法,將整個(gè)業(yè)務(wù)也可以劃分成一個(gè)個(gè)的實(shí)體,而每個(gè)實(shí)體之間的關(guān)系,以及針對(duì)這些關(guān)系的說明就是我們數(shù)據(jù)建模需要做的工作。
雖然實(shí)體法粗看起來好像有一些抽象,其實(shí)理解起來很容易。即我們可以將任何一個(gè)業(yè)務(wù)過程劃分成 3 個(gè)部分,實(shí)體,事件,說明,如下圖所示:
實(shí)體建模
上圖表述的是一個(gè)抽象的含義,如果我們描述一個(gè)簡(jiǎn)單的事實(shí):“小明開車去學(xué)校上學(xué)”。以這個(gè)業(yè)務(wù)事實(shí)為例,我們可以把“小明”,“學(xué)校”看成是一個(gè)實(shí)體,“上學(xué)”描述的是一個(gè)業(yè)務(wù)過程,我們?cè)谶@里可以抽象為一個(gè)具體“事件”,而“開車去”則可以看成是事件“上學(xué)”的一個(gè)說明。
維度建模
維度建模是目前應(yīng)用較為廣泛的,專門應(yīng)用于分析型數(shù)據(jù)庫、數(shù)據(jù)倉庫、數(shù)據(jù)集市建模的方法。數(shù)據(jù)集市可以理解為是一種"小型數(shù)據(jù)倉庫"。
1. 維度建模中表的類型
1. 事實(shí)表
發(fā)生在現(xiàn)實(shí)世界中的操作型事件,其所產(chǎn)生的可度量數(shù)值,存儲(chǔ)在事實(shí)表中。從最低的粒度級(jí)別來看,事實(shí)表行對(duì)應(yīng)一個(gè)度量事件,反之亦然。
事實(shí)表表示對(duì)分析主題的度量。比如一次購買行為我們就可以理解為是一個(gè)事實(shí)。
事實(shí)與維度
圖中的訂單表就是一個(gè)事實(shí)表,你可以理解他就是在現(xiàn)實(shí)中發(fā)生的一次操作型事件,我們每完成一個(gè)訂單,就會(huì)在訂單中增加一條記錄。事實(shí)表的特征:表里沒有存放實(shí)際的內(nèi)容,他是一堆主鍵的集合,這些ID分別能對(duì)應(yīng)到維度表中的一條記錄。事實(shí)表包含了與各維度表相關(guān)聯(lián)的外鍵,可與維度表關(guān)聯(lián)。事實(shí)表的度量通常是數(shù)值類型,且記錄數(shù)會(huì)不斷增加,表數(shù)據(jù)規(guī)模迅速增長(zhǎng)。
明細(xì)表(寬表):
事實(shí)表的數(shù)據(jù)中,有些屬性共同組成了一個(gè)字段(糅合在一起),比如年月日時(shí)分秒構(gòu)成了時(shí)間,當(dāng)需要根據(jù)某一屬性進(jìn)行分組統(tǒng)計(jì)的時(shí)候,需要截取拼接之類的操作,效率極低。如:
| local_time |
|---|
| 2021-03-18 06:31:42 |
為了分析方便,可以事實(shí)表中的一個(gè)字段切割提取多個(gè)屬性出來構(gòu)成新的字段,因?yàn)樽侄巫兌嗔耍苑Q為寬表,原來的成為窄表。
將上述的local_time字段擴(kuò)展為如下6個(gè)字段:
| year | month | day | hour | m | s |
|---|---|---|---|---|---|
| 2021 | 03 | 18 | 06 | 31 | 42 |
又因?yàn)閷挶淼男畔⒏忧逦骷?xì),所以也可以稱之為明細(xì)表。
2.維度表
每個(gè)維度表都包含單一的主鍵列。維度表的主鍵可以作為與之關(guān)聯(lián)的任何事實(shí)表的外鍵,當(dāng)然,維度表行的描述環(huán)境應(yīng)與事實(shí)表行完全對(duì)應(yīng)。維度表通常比較寬,是扁平型非規(guī)范表,包含大量的低粒度的文本屬性。
維度表示你要對(duì)數(shù)據(jù)進(jìn)行分析時(shí)所用的一個(gè)量,比如你要分析產(chǎn)品銷售情況, 你可以選擇按類別來進(jìn)行分析,或按區(qū)域來分析。每個(gè)類別就構(gòu)成一個(gè)維度。事實(shí)表的圖中的用戶表、商家表、時(shí)間表這些都屬于維度表,這些表都有一個(gè)唯一的主鍵,然后在表中存放了詳細(xì)的數(shù)據(jù)信息。
總的說來,在數(shù)據(jù)倉庫中不需要嚴(yán)格遵守規(guī)范化設(shè)計(jì)原則。因?yàn)閿?shù)據(jù)倉庫的主導(dǎo)功能就是面向分析,以查詢?yōu)橹?,不涉及?shù)據(jù)更新操作。事實(shí)表的設(shè)計(jì)是以能夠正確記錄歷史信息為準(zhǔn)則,維度表的設(shè)計(jì)是以能夠以合適的角度來聚合主題內(nèi)容為準(zhǔn)則。
2. 維度建模三種模式
1. 星型模式
星形模式(Star Schema)是最常用的維度建模方式。星型模式是以事實(shí)表為中心,所有的維度表直接連接在事實(shí)表上,像星星一樣。星形模式的維度建模由一個(gè)事實(shí)表和一組維表成,且具有以下特點(diǎn):a. 維表只和事實(shí)表關(guān)聯(lián),維表之間沒有關(guān)聯(lián);b. 每個(gè)維表主鍵為單列,且該主鍵放置在事實(shí)表中,作為兩邊連接的外鍵;c. 以事實(shí)表為核心,維表圍繞核心呈星形分布;
2. 雪花模式
雪花模式(Snowflake Schema)是對(duì)星形模式的擴(kuò)展。雪花模式的維度表可以擁有其他維度表的,雖然這種模型相比星型更規(guī)范一些,但是由于這種模型不太容易理解,維護(hù)成本比較高,而且性能方面需要關(guān)聯(lián)多層維表,性能也比星型模型要低。所以一般不是很常用
雪花模式
3.星座模式
星座模式是星型模式延伸而來,星型模式是基于一張事實(shí)表的,而星座模式是基于多張事實(shí)表的,而且共享維度信息。前面介紹的兩種維度建模方法都是多維表對(duì)應(yīng)單事實(shí)表,但在很多時(shí)候維度空間內(nèi)的事實(shí)表不止一個(gè),而一個(gè)維表也可能被多個(gè)事實(shí)表用到。在業(yè)務(wù)發(fā)展后期,絕大部分維度建模都采用的是星座模式。
星座模型
3. 維度建模過程
我們知道維度建模的表類型有事實(shí)表,維度表;模式有星形模型,雪花模型,星座模型這些概念了,但是實(shí)際業(yè)務(wù)中,給了我們一堆數(shù)據(jù),我們?cè)趺茨眠@些數(shù)據(jù)進(jìn)行數(shù)倉建設(shè)呢,數(shù)倉工具箱作者根據(jù)自身60多年的實(shí)際業(yè)務(wù)經(jīng)驗(yàn),給我們總結(jié)了如下四步,請(qǐng)務(wù)必記住!
數(shù)倉工具箱中的維度建模四步走:
維度建模四步走
請(qǐng)牢記以上四步,不管什么業(yè)務(wù),就按照這個(gè)步驟來,順序不要搞亂,因?yàn)檫@四步是環(huán)環(huán)相扣,步步相連。下面詳細(xì)拆解下每個(gè)步驟怎么做
1、選擇業(yè)務(wù)過程
維度建模是緊貼業(yè)務(wù)的,所以必須以業(yè)務(wù)為根基進(jìn)行建模,那么選擇業(yè)務(wù)過程,顧名思義就是在整個(gè)業(yè)務(wù)流程中選取我們需要建模的業(yè)務(wù),根據(jù)運(yùn)營(yíng)提供的需求及日后的易擴(kuò)展性等進(jìn)行選擇業(yè)務(wù)。比如商城,整個(gè)商城流程分為商家端,用戶端,平臺(tái)端,運(yùn)營(yíng)需求是總訂單量,訂單人數(shù),及用戶的購買情況等,我們選擇業(yè)務(wù)過程就選擇用戶端的數(shù)據(jù),商家及平臺(tái)端暫不考慮。業(yè)務(wù)選擇非常重要,因?yàn)楹竺嫠械牟襟E都是基于此業(yè)務(wù)數(shù)據(jù)展開的。
2、聲明粒度
先舉個(gè)例子:對(duì)于用戶來說,一個(gè)用戶有一個(gè)身份證號(hào),一個(gè)戶籍地址,多個(gè)手機(jī)號(hào),多張銀行卡,那么與用戶粒度相同的粒度屬性有身份證粒度,戶籍地址粒度,比用戶粒度更細(xì)的粒度有手機(jī)號(hào)粒度,銀行卡粒度,存在一對(duì)一的關(guān)系就是相同粒度。為什么要提相同粒度呢,因?yàn)榫S度建模中要求我們,在同一事實(shí)表中,必須具有相同的粒度,同一事實(shí)表中不要混用多種不同的粒度,不同的粒度數(shù)據(jù)建立不同的事實(shí)表。并且從給定的業(yè)務(wù)過程獲取數(shù)據(jù)時(shí),強(qiáng)烈建議從關(guān)注原子粒度開始設(shè)計(jì),也就是從最細(xì)粒度開始,因?yàn)樵恿6饶軌虺惺軣o法預(yù)期的用戶查詢。但是上卷匯總粒度對(duì)查詢性能的提升很重要的,所以對(duì)于有明確需求的數(shù)據(jù),我們建立針對(duì)需求的上卷匯總粒度,對(duì)需求不明朗的數(shù)據(jù)我們建立原子粒度。
3、確認(rèn)維度
維度表是作為業(yè)務(wù)分析的入口和描述性標(biāo)識(shí),所以也被稱為數(shù)據(jù)倉庫的“靈魂”。在一堆的數(shù)據(jù)中怎么確認(rèn)哪些是維度屬性呢,如果該列是對(duì)具體值的描述,是一個(gè)文本或常量,某一約束和行標(biāo)識(shí)的參與者,此時(shí)該屬性往往是維度屬性,數(shù)倉工具箱中告訴我們牢牢掌握事實(shí)表的粒度,就能將所有可能存在的維度區(qū)分開,并且要確保維度表中不能出現(xiàn)重復(fù)數(shù)據(jù),應(yīng)使維度主鍵唯一
4、確認(rèn)事實(shí)
事實(shí)表是用來度量的,基本上都以數(shù)量值表示,事實(shí)表中的每行對(duì)應(yīng)一個(gè)度量,每行中的數(shù)據(jù)是一個(gè)特定級(jí)別的細(xì)節(jié)數(shù)據(jù),稱為粒度。維度建模的核心原則之一是同一事實(shí)表中的所有度量必須具有相同的粒度。這樣能確保不會(huì)出現(xiàn)重復(fù)計(jì)算度量的問題。有時(shí)候往往不能確定該列數(shù)據(jù)是事實(shí)屬性還是維度屬性。記住最實(shí)用的事實(shí)就是數(shù)值類型和可加類事實(shí)。所以可以通過分析該列是否是一種包含多個(gè)值并作為計(jì)算的參與者的度量,這種情況下該列往往是事實(shí)。
實(shí)際業(yè)務(wù)中數(shù)倉分層
數(shù)倉分層要結(jié)合公司業(yè)務(wù)進(jìn)行,并且需要清晰明確各層職責(zé),要保證數(shù)據(jù)層的穩(wěn)定又要屏蔽對(duì)下游影響,一般采用如下分層結(jié)構(gòu):
數(shù)據(jù)分層架構(gòu)
數(shù)據(jù)層具體實(shí)現(xiàn)
使用四張圖說明每層的具體實(shí)現(xiàn)
數(shù)據(jù)源層
數(shù)據(jù)源層主要將各個(gè)業(yè)務(wù)數(shù)據(jù)導(dǎo)入到大數(shù)據(jù)平臺(tái),作為業(yè)務(wù)數(shù)據(jù)的快照存儲(chǔ)。
數(shù)據(jù)明細(xì)層
事實(shí)表中的每行對(duì)應(yīng)一個(gè)度量,每行中的數(shù)據(jù)是一個(gè)特定級(jí)別的細(xì)節(jié)數(shù)據(jù),稱為粒度。要記住的是同一事實(shí)表中的所有度量必須具有相同的粒度。
維度表一般都是單一主鍵,少數(shù)是聯(lián)合主鍵,注意維度表不要出現(xiàn)重復(fù)數(shù)據(jù),否則和事實(shí)表關(guān)聯(lián)會(huì)出現(xiàn)數(shù)據(jù)發(fā)散問題。
有時(shí)候往往不能確定該列數(shù)據(jù)是事實(shí)屬性還是維度屬性。記住最實(shí)用的事實(shí)就是數(shù)值類型和可加類事實(shí)。所以可以通過分析該列是否是一種包含多個(gè)值并作為計(jì)算的參與者的度量,這種情況下該列往往是事實(shí);如果該列是對(duì)具體值的描述,是一個(gè)文本或常量,某一約束和行標(biāo)識(shí)的參與者,此時(shí)該屬性往往是維度屬性。但是還是要結(jié)合業(yè)務(wù)進(jìn)行最終判斷是維度還是事實(shí)。
數(shù)據(jù)輕度匯總層
此層命名為輕匯總層,就代表這一層已經(jīng)開始對(duì)數(shù)據(jù)進(jìn)行匯總,但是不是完全匯總,只是對(duì)相同粒度的數(shù)據(jù)進(jìn)行關(guān)聯(lián)匯總,不同粒度但是有關(guān)系的數(shù)據(jù)也可進(jìn)行匯總,此時(shí)需要將粒度通過聚合等操作進(jìn)行統(tǒng)一。
- 數(shù)據(jù)應(yīng)用層APP
數(shù)據(jù)應(yīng)用層的表就是提供給用戶使用的,數(shù)倉建設(shè)到此就接近尾聲了,接下來就根據(jù)不同的需求進(jìn)行不同的取數(shù),如直接進(jìn)行報(bào)表展示,或提供給數(shù)據(jù)分析的同事所需的數(shù)據(jù),或其他的業(yè)務(wù)支撐。
最后
技術(shù)是為業(yè)務(wù)服務(wù)的,業(yè)務(wù)是為公司創(chuàng)造價(jià)值的,離開業(yè)務(wù)的技術(shù)是無意義的。所以數(shù)倉的建設(shè)與業(yè)務(wù)是息息相關(guān)的,公司的業(yè)務(wù)不同,數(shù)倉的建設(shè)也是不同的,只有適合的才是最好的。














































