偷偷摘套内射激情视频,久久精品99国产国产精,中文字幕无线乱码人妻,中文在线中文a,性爽19p

這份AI算法崗面經(jīng)很干貨:亞馬遜分享實(shí)戰(zhàn)經(jīng)驗(yàn),履歷到面試全都有

新聞 人工智能 算法
如果你是算法工程師,加入亞馬遜這樣的公司,會(huì)經(jīng)歷一個(gè)怎樣的面試過(guò)程?最近這則詳實(shí)面經(jīng),獲得高贊,或許可能給你一些參考和借鑒。

 本文經(jīng)AI新媒體量子位(公眾號(hào)ID:QbitAI)授權(quán)轉(zhuǎn)載,轉(zhuǎn)載請(qǐng)聯(lián)系出處。

亞馬遜,全球首富貝佐斯之下的巨頭,全球市值最高的科技公司。

也是目前技術(shù)人才發(fā)展前景最被看好的組織。

那么問(wèn)題來(lái)了:如果你是算法工程師,加入亞馬遜這樣的公司,會(huì)經(jīng)歷一個(gè)怎樣的面試過(guò)程?

最近這則詳實(shí)面經(jīng),獲得高贊,或許可能給你一些參考和借鑒。

[[329266]]

滿滿干貨,建議先收藏后看~

崗位要求

首先,我們先來(lái)看看最刺激的——崗位要求。

  • 數(shù)學(xué)、統(tǒng)計(jì)學(xué)、計(jì)算機(jī)科學(xué)或類似專業(yè)的本科學(xué)位以上
  • 5年以上相關(guān)領(lǐng)域的工作經(jīng)驗(yàn)
  • 具有豐富的預(yù)測(cè)和決策模型和數(shù)據(jù)挖掘技術(shù)的工作經(jīng)驗(yàn),以及能夠使用開(kāi)發(fā)此類模型的工具。

是不是覺(jué)得還好?那我們?cè)賮?lái)看看優(yōu)先條件:

  • 構(gòu)建以及操作高可行性的分布式數(shù)據(jù)提取、收集和處理大型數(shù)據(jù)集的系統(tǒng)的經(jīng)驗(yàn)
  • 使用Linux/UNIX處理大型數(shù)據(jù)集的經(jīng)驗(yàn)
  • 熟悉AWS技術(shù),如Redshift、S3、EC2、Data Pipeline和EMR等。
  • 具備深厚的技術(shù)能力和足夠的業(yè)務(wù)知識(shí),能夠與客戶組織內(nèi)的各個(gè)層面和各個(gè)領(lǐng)域的人員進(jìn)行溝通。

有哪些崗位可以選擇?

看完崗位要求,是不是深吸一口氣!

[[329267]]

別急,我們?cè)賮?lái)看看在亞馬遜,算法工程師們有哪些崗位可以選擇。

就目前來(lái)看,主要有4種,分別是數(shù)據(jù)科學(xué)家、機(jī)器學(xué)習(xí)工程師、研究科學(xué)家以及應(yīng)用科學(xué)家。

這些崗位大體上相似,都是使用大量數(shù)據(jù)來(lái)為各種客戶構(gòu)建機(jī)器學(xué)習(xí)(ML)和深度學(xué)習(xí)(DL)模型。

但還是有些區(qū)別的。

首先在亞馬遜,數(shù)據(jù)科學(xué)家要有對(duì)數(shù)據(jù)驅(qū)動(dòng)的洞察力。

他們是連接業(yè)務(wù)和技術(shù)的紐帶,負(fù)責(zé)分析大數(shù)據(jù)集,并對(duì)其進(jìn)行建模。

機(jī)器學(xué)習(xí)工程師則是構(gòu)建機(jī)器學(xué)習(xí)和深度學(xué)習(xí)模型的專家。

不僅需要為亞馬遜本司構(gòu)建模型,也為AWS上的其他大型企業(yè)構(gòu)建模型。

除了構(gòu)建模型之外,還有實(shí)現(xiàn)模型,然后將其投入生產(chǎn)。

[[329268]]

研究科學(xué)家呢,顧名思義,就是要搞研究。

這個(gè)崗位通常是具有較高的教育水平,往往是碩士或博士。

研究型科學(xué)家需要突破知識(shí)技術(shù)的局限,擴(kuò)展可能的極限。簡(jiǎn)單來(lái)說(shuō),就是對(duì)新舊技術(shù)進(jìn)行研究,以確定這些技術(shù)在實(shí)踐中是否有益。

應(yīng)用科學(xué)家也需要較高的教育水平,這是比亞馬遜的研究型科學(xué)家略高的角色。

這個(gè)崗位專注于提升亞馬遜客戶體驗(yàn)的項(xiàng)目,如亞馬遜的自動(dòng)語(yǔ)音識(shí)別(ASR)、自然語(yǔ)言理解(NLU)、音頻信號(hào)處理、文本到語(yǔ)音(TTS)和對(duì)話管理等。

看到這里,你覺(jué)得OK嗎?

不管OK不OK,先投著簡(jiǎn)歷試試唄~

投之前,先來(lái)看看基本的面試流程。

面試流程

亞馬遜的面試流程有2步到3步不等。

但是對(duì)于算法工程師,主要有電話面試、技術(shù)面試、以及現(xiàn)場(chǎng)面試3個(gè)步驟。

首先,第一步,電話面試。

跟大多數(shù)公司的第一次面試差不多,這一步驟主要是由公司的HR負(fù)責(zé)。

主要是了解應(yīng)聘者的基本情況,例如簡(jiǎn)歷、過(guò)去的經(jīng)歷,希望看到你想要加入亞馬遜的興趣以及職位匹配的能力。

這一步只要你保持謙虛真誠(chéng),實(shí)事求是就好,就能夠安穩(wěn)度過(guò)。

那么就來(lái)到第二步——技術(shù)面試,這一面試是由來(lái)自公司的算法工程師來(lái)負(fù)責(zé)。

首先,詢問(wèn)一些專業(yè)知識(shí),包括ML的一些基本概念,比如不同ML模型的解釋、偏置-方差取舍、過(guò)擬合等。

主要是你對(duì)這塊知識(shí)的了解情況。

接著,就會(huì)是一些編碼問(wèn)題,你可以使用任何語(yǔ)言來(lái)解答。

當(dāng)然根據(jù)你所應(yīng)聘的崗位,問(wèn)題也會(huì)有所不同。

要不先來(lái)提前了解一下有哪些問(wèn)題?

舉幾個(gè)例子:

  • (Coding) Given an Array of numbers & a target value, return indexes of two numbers such that their Absolute difference is equal to the target.(給出一個(gè)數(shù)組和一個(gè)目標(biāo)值,返回兩個(gè)數(shù)字的索引,使其絕對(duì)值與目標(biāo)值的絕對(duì)差值相等)
  • (Coding) Given two dates D1 & D2. count number of days, months?(給定兩個(gè)日期,算出天數(shù)、月數(shù)?)
  • (Machine Learning) How do to find thresholds for a classifier?(如何為分類器找到閾值?)
  • (Machine Learning) What’s the difference between logistic regression and support vector machines? What’s an example of a situation where you would use one over the other?(邏輯回歸和支持向量機(jī)有什么區(qū)別?在什么情況下,您會(huì)使用其中一種而不是另一種?)
  • (Modeling) What is the interpretation of an ROC area under the curve as an integral?(如何解釋曲線下的ROC面積的積分?)
[[329269]]

如果你前面兩輪面試都過(guò)了,那么恭喜你,來(lái)到了現(xiàn)場(chǎng)面試。

現(xiàn)場(chǎng)面試大概會(huì)有5輪到6輪,主要是技術(shù)面試和行為面試。

首先,技術(shù)面試不多言,就是刷題。大概會(huì)有幾輪,主要是關(guān)于ML和編程這兩個(gè)方面,面試官喜歡詢問(wèn)面向?qū)ο蟮脑O(shè)計(jì)問(wèn)題,所以一定要好好刷題!

舉一個(gè)例子:

Let’s say you have a categorical variable with thousands of distinct values, how would you encode it?(假設(shè)你有一個(gè)有成千上萬(wàn)個(gè)不同值的分類變量,你會(huì)如何編碼?)

行為面試,就需要你提前去了解一下亞馬遜的14條領(lǐng)導(dǎo)力原則、崗位的具體職能、以及公司文化等一些知識(shí)。

據(jù)了解,Amazon的問(wèn)題喜歡圍繞著Customer為中心來(lái)提問(wèn),需要你提前準(zhǔn)備好經(jīng)歷故事,整理好話術(shù),結(jié)合著那14條的原則來(lái)答就可以啦。

這份AI算法崗面經(jīng)很干貨:亞馬遜分享實(shí)戰(zhàn)經(jīng)驗(yàn),履歷到面試全都有

好了,以上就是亞馬遜的面經(jīng)指南,希望能夠?qū)δ阌兴鶐椭?/p>

或許對(duì)于其他大廠的相似崗位,也有可用之處。

另外,如果你有其他明星公司的面試經(jīng)歷和經(jīng)驗(yàn),也歡迎分享給我們~

 

責(zé)任編輯:張燕妮 來(lái)源: 量子位
相關(guān)推薦

2020-10-09 10:10:28

編程小程序開(kāi)發(fā)

2022-02-09 08:55:13

RAID獨(dú)立冗余磁盤陣列數(shù)據(jù)丟失

2011-07-07 10:49:41

JavaScript

2015-11-10 09:50:51

IT實(shí)施計(jì)劃IT

2015-11-10 09:40:55

IT實(shí)施計(jì)劃IT

2018-11-13 17:12:53

戴爾

2023-10-23 13:03:04

2019-08-12 08:43:53

GitHub代碼開(kāi)發(fā)者

2025-08-29 07:25:00

CIOAI企業(yè)

2025-07-09 07:15:00

AIGenAICIO

2025-08-28 07:26:00

AI數(shù)據(jù)風(fēng)險(xiǎn)人工智能

2017-08-21 08:20:03

海云捷迅教育云實(shí)戰(zhàn)

2022-02-17 12:57:18

Kali LinuxLinux

2025-07-04 00:00:00

2025-05-30 08:09:28

2022-08-11 13:49:37

機(jī)器學(xué)習(xí)技術(shù)

2019-05-06 13:42:13

大數(shù)據(jù)分布式架構(gòu)

2018-06-04 10:58:46

機(jī)器學(xué)習(xí)預(yù)測(cè)應(yīng)用API

2025-06-12 07:10:00

AIGenAI人工智能
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)