偷偷摘套内射激情视频,久久精品99国产国产精,中文字幕无线乱码人妻,中文在线中文a,性爽19p

100個Python機器學(xué)習(xí)小技巧,讓你速通ML

人工智能
本文分享一系列簡潔的代碼片段,涵蓋機器學(xué)習(xí)過程的各個階段,從數(shù)據(jù)準備、模型選擇,到模型評估和超參數(shù)調(diào)優(yōu)。

構(gòu)建機器學(xué)習(xí)模型是數(shù)據(jù)科學(xué)的關(guān)鍵環(huán)節(jié),涉及運用算法進行數(shù)據(jù)預(yù)測或挖掘數(shù)據(jù)中的模式。

本文分享一系列簡潔的代碼片段,涵蓋機器學(xué)習(xí)過程的各個階段,從數(shù)據(jù)準備、模型選擇,到模型評估和超參數(shù)調(diào)優(yōu)。這些代碼示例能幫助你使用諸如Scikit-Learn、XGBoost、CatBoost、LightGBM等庫,完成常見的機器學(xué)習(xí)任務(wù),還包含使用Hyperopt進行超參數(shù)優(yōu)化、利用SHAP值進行模型解釋等高級技術(shù)。

借助這些快速參考代碼,你可以簡化機器學(xué)習(xí)工作流程,在不同領(lǐng)域開發(fā)出高效的預(yù)測模型。

一、數(shù)據(jù)處理與探索

  1. 加載數(shù)據(jù)集:data = pd.read_csv('dataset.csv')
  2. 探索數(shù)據(jù):data.head()、data.info()、data.describe()
  3. 處理缺失值:data.dropna()、data.fillna()
  4. 編碼分類變量:pd.get_dummies(data)
  5. 將數(shù)據(jù)拆分為訓(xùn)練集和測試集:X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
  6. 特征縮放:scaler = StandardScaler(),X_scaled = scaler.fit_transform(X)

二、模型初始化、訓(xùn)練與評估

  1. 初始化模型:model = RandomForestClassifier()
  2. 訓(xùn)練模型:model.fit(X_train, y_train)
  3. 進行預(yù)測:predictions = model.predict(X_test)
  4. 評估準確率:accuracy_score(y_test, predictions)
  5. 混淆矩陣:conf_matrix = confusion_matrix(y_test, predictions)
  6. 分類報告:class_report = classification_report(y_test, predictions)
  7. 交叉驗證:cv_scores = cross_val_score(model, X, y, cv=5)
  8. 超參數(shù)調(diào)優(yōu):grid_search = GridSearchCV(model, param_grid, cv=5),grid_search.fit(X, y)
  9. 特征重要性:feature_importance = model.feature_importances_
  10. 保存模型:joblib.dump(model,'model.pkl')
  11. 加載模型:loaded_model = joblib.load('model.pkl')

三、降維和聚類

  1. 主成分分析:pca = PCA(n_components=2),X_pca = pca.fit_transform(X)
  2. 降維:pca = PCA(n_components=2),X_pca = pca.fit_transform(X)
  3. K均值聚類:kmeans = KMeans(n_clusters=3),kmeans.fit(X),labels = kmeans.labels_
  4. 手肘法:Sum_of_squared_distances = [],for k in range(1,11): kmeans = KMeans(n_clusters=k),kmeans.fit(X),Sum_of_squared_distances.append(kmeans.inertia_)
  5. 輪廓系數(shù):silhouette_avg = silhouette_score(X, labels)

四、各類分類模型

  1. 決策樹:dt_model = DecisionTreeClassifier(),dt_model.fit(X_train, y_train)
  2. 支持向量機:svm_model = SVC(),svm_model.fit(X_train, y_train)
  3. 樸素貝葉斯:nb_model = GaussianNB(),nb_model.fit(X_train, y_train)
  4. K近鄰分類:knn_model = KNeighborsClassifier(),knn_model.fit(X_train, y_train)
  5. 近鄰回歸:KNeighborsRegressor(n_neighbors=5).fit(X_train, y_train)
  6. 邏輯回歸:logreg_model = LogisticRegression(),logreg_model.fit(X_train, y_train)
  7. 嶺回歸:ridge_model = Ridge(),ridge_model.fit(X_train, y_train)
  8. 套索回歸:lasso_model = Lasso(),lasso_model.fit(X_train, y_train)
  9. 集成方法:ensemble_model = VotingClassifier(estimators=[('clf1', clf1), ('clf2', clf2)], voting='soft'),ensemble_model.fit(X_train, y_train)
  10. 裝袋法:bagging_model = BaggingClassifier(base_estimator=DecisionTreeClassifier(), n_estimators=100),bagging_model.fit(X_train, y_train)
  11. 隨機森林:rf_model = RandomForestClassifier(n_estimators=100),rf_model.fit(X_train, y_train)
  12. 梯度提升:gb_model = GradientBoostingClassifier(),gb_model.fit(X_train, y_train)
  13. AdaBoost:adaboost_model = AdaBoostClassifier(),adaboost_model.fit(X_train, y_train)
  14. XGBoost:xgb_model = xgb.XGBClassifier(),xgb_model.fit(X_train, y_train)
  15. LightGBM:lgb_model = lgb.LGBMClassifier(),lgb_model.fit(X_train, y_train)
  16. CatBoost:catboost_model = CatBoostClassifier(),catboost_model.fit(X_train, y_train)

五、模型評估指標

  1. ROC曲線:fpr, tpr, thresholds = roc_curve(y_test, predictions_prob[:,1])
  2. ROC曲線下面積:roc_auc = roc_auc_score(y_test, predictions_prob[:,1])
  3. 精確率 - 召回率曲線:precision, recall, thresholds = precision_recall_curve(y_test, predictions_prob[:,1])
  4. 精確率 - 召回率曲線下面積:pr_auc = auc(recall, precision)
  5. F1分數(shù):f1 = f1_score(y_test, predictions)
  6. 受試者工作特征曲線AUC:roc_auc = roc_auc_score(y_test, predictions_prob[:,1])
  7. 均方誤差:mse = mean_squared_error(y_test, predictions)
  8. 決定系數(shù)(R2):r2 = r2_score(y_test, predictions)

六、交叉驗證和采樣技術(shù)

  1. 分層采樣:stratified_kfold = StratifiedKFold(n_splits=5)
  2. 時間序列分割:time_series_split = TimeSeriesSplit(n_splits=5)
  3. 重采樣(欠采樣):rus = RandomUnderSampler(),X_resampled, y_resampled = rus.fit_resample(X, y)
  4. 重采樣(過采樣):ros = RandomOverSampler(),X_resampled, y_resampled = ros.fit_resample(X, y)
  5. SMOTE(合成少數(shù)過采樣技術(shù)):smote = SMOTE(),X_resampled, y_resampled = smote.fit_resample(X, y)
  6. 類別權(quán)重:class_weight='balanced'
  7. 交叉驗證中的分層采樣:stratified_cv = StratifiedKFold(n_splits=5)

七、特征工程與轉(zhuǎn)換

  1. 學(xué)習(xí)曲線:plot_learning_curve(model, X, y)
  2. 驗證曲線:plot_validation_curve(model, X, y, param_name='param', param_range=param_range)
  3. 提前停止(以XGBoost為例):early_stopping_rounds=10
  4. 特征縮放:scaler = MinMaxScaler(feature_range=(0, 1)),X_scaled = scaler.fit_transform(X)
  5. 獨熱編碼:data_encoded = pd.get_dummies(data)
  6. 標簽編碼:label_encoder = LabelEncoder(),data['label_encoded'] = label_encoder.fit_transform(data['label'])
  7. 數(shù)據(jù)歸一化:scaler = StandardScaler(),X_normalized = scaler.fit_transform(X)
  8. 數(shù)據(jù)標準化:scaler = MinMaxScaler(),X_standardized = scaler.fit_transform(X)
  9. 數(shù)據(jù)變換:X_transformed = np.log1p(data)
  10. 異常值檢測:iso_forest = IsolationForest(),outliers = iso_forest.fit_predict(X)
  11. 異常檢測:envelope = EllipticEnvelope(contamination=0.01),outliers = envelope.fit_predict(X)
  12. 數(shù)據(jù)插補:imputer = SimpleImputer(strategy='mean'),X_imputed = imputer.fit_transform(X)
  13. 多項式回歸:poly = PolynomialFeatures(degree=2),X_poly = poly.fit_transform(X)

八、回歸模型與技術(shù)

  1. L1正則化:lasso = Lasso(alpha=1.0),lasso.fit(X_train, y_train)
  2. L2正則化:ridge = Ridge(alpha=1.0),ridge.fit(X_train, y_train)
  3. Huber回歸:huber = HuberRegressor(),huber.fit(X_train, y_train)
  4. 分位數(shù)回歸:quantile_reg = QuantReg(y_train, X_train),quantile_result = quantile_reg.fit(q=0.5)
  5. 穩(wěn)健回歸:ransac = RANSACRegressor(),ransac.fit(X_train, y_train)

九、自動化機器學(xué)習(xí)和高級技術(shù)

  1. 使用TPOT進行自動化機器學(xué)習(xí):tpot = TPOTClassifier(),tpot.fit(X_train, y_train)
  2. 使用H2O進行自動化機器學(xué)習(xí):h2o_automl = H2OAutoML(max_models=10, seed=1),h2o_automl.train(x=X_train.columns, y='target', training_frame=train)

十、繪圖與可視化

  1. 保存繪圖:plt.savefig('plot.png')
  2. 繪制特征重要性圖:plot_feature_importance(model)
  3. K均值聚類可視化:plt.scatter(X[:, 0], X[:, 1], c=KMeans(n_clusters=3).fit_predict(X), cmap='viridis')

十一、其他

  1. 交叉驗證預(yù)測:cv_predictions = cross_val_predict(model, X, y, cv=5)
  2. 自定義評估指標:custom_metric = custom_metric(y_true, y_pred)
  3. 使用scikit-learn進行特征選擇:kbest = SelectKBest(chi2, k=5),X_selected = kbest.fit_transform(X, y)
  4. 帶交叉驗證的遞歸特征消除:rfecv = RFECV(estimator=DecisionTreeClassifier(), step=1, cv=5),X_rfecv = rfecv.fit_transform(X, y)
  5. 多項式回歸次數(shù):poly = PolynomialFeatures(degree=2),X_poly = poly.fit_transform(X)
  6. 處理類別不平衡問題:class_weight='balanced'
  7. AdaBoost中的學(xué)習(xí)率:learning_rate=0.1
  8. 用于確??芍貜?fù)性的隨機種子:random_state=42
  9. 嶺回歸的alpha參數(shù):ridge = Ridge(alpha=1.0),ridge.fit(X_train, y_train)
  10. 套索回歸的alpha參數(shù):lasso = Lasso(alpha=1.0),lasso.fit(X_train, y_train)
  11. 決策樹的最大深度:dt_model = DecisionTreeClassifier(max_depth=3),dt_model.fit(X_train, y_train)
  12. K近鄰的參數(shù):knn_model = KNeighborsClassifier(n_neighbors=5),knn_model.fit(X_train, y_train)
  13. 支持向量機的核參數(shù):svm_model = SVC(kernel='rbf'),svm_model.fit(X_train, y_train)
  14. 隨機森林的估計器數(shù)量:rf_model = RandomForestClassifier(n_estimators=100),rf_model.fit(X_train, y_train)
  15. 梯度提升的學(xué)習(xí)率:gb_model = GradientBoostingClassifier(learning_rate=0.1),gb_model.fit(X_train, y_train)
  16. 使用網(wǎng)格搜索的Huber回歸:GridSearchCV(HuberRegressor(), {'epsilon': [1.1, 1.2, 1.3]}, cv=5).fit(X_train, y_train)
  17. 帶交叉驗證的嶺回歸:RidgeCV(alphas=[0.1, 1.0, 10.0], cv=5).fit(X_train, y_train)
  18. 模型堆疊:stacked_model = StackingClassifier(classifiers=[clf1, clf2], meta_classifier=meta_clf),stacked_model.fit(X_train, y_train)
責(zé)任編輯:武曉燕 來源: Python學(xué)研大本營
相關(guān)推薦

2024-01-08 17:09:07

Python解釋器CPython

2022-01-06 22:31:21

Python技巧代碼

2009-10-27 09:09:06

Eclipse技巧

2025-05-22 07:40:32

2024-12-31 00:00:30

CursorAI編程

2020-05-06 16:32:18

for循環(huán)Python迭代

2020-07-08 17:06:00

Python開發(fā)工具

2024-02-26 18:11:08

Docker容器鏡像

2024-11-25 18:37:09

2023-12-06 13:43:00

python代碼

2019-03-19 14:20:58

Linux在機器學(xué)習(xí)腳本

2019-04-29 08:31:25

PythonPandas數(shù)據(jù)

2021-02-22 11:00:39

機器學(xué)習(xí)人工智能AI

2025-04-09 00:01:05

2021-02-16 00:17:39

電腦技巧系統(tǒng)

2024-10-08 10:24:41

Python編程語言

2020-05-07 17:03:49

Python編碼開發(fā)

2022-01-04 07:28:05

MySQL SQL 語句數(shù)據(jù)庫

2021-08-17 10:08:44

HTML網(wǎng)站網(wǎng)絡(luò)

2020-11-29 17:32:01

EmacsLinux
點贊
收藏

51CTO技術(shù)棧公眾號