偷偷摘套内射激情视频,久久精品99国产国产精,中文字幕无线乱码人妻,中文在线中文a,性爽19p

MIT推出拾物機(jī)器人「最強(qiáng)輔助」,少量訓(xùn)練樣本即可實(shí)現(xiàn)自然語言控制

人工智能 新聞
研究人員將2D特征嵌入了三維空間,構(gòu)建出了用于控制機(jī)器人的特征場(chǎng)(F3RM)。這樣一來,在2D圖像中構(gòu)建的圖像特征和語義數(shù)據(jù),就能被三維的機(jī)器人理解并使用了。

本文經(jīng)AI新媒體量子位(公眾號(hào)ID:QbitAI)授權(quán)轉(zhuǎn)載,轉(zhuǎn)載請(qǐng)聯(lián)系出處。

MIT的這項(xiàng)新成果,讓取物機(jī)器人變得更聰明了!

不僅能理解自然語言指令,還可以拾取沒見過的物體。

麻麻再也不用擔(dān)心我找不到東西了!

研究人員將2D特征嵌入了三維空間,構(gòu)建出了用于控制機(jī)器人的特征場(chǎng)(F3RM)。

這樣一來,在2D圖像中構(gòu)建的圖像特征和語義數(shù)據(jù),就能被三維的機(jī)器人理解并使用了。

不僅操作簡單,訓(xùn)練過程中需要的樣本量也很小。

低訓(xùn)練樣本實(shí)現(xiàn)輕松取物

我們可以看到,在F3RM的幫助下,機(jī)器人可以嫻熟地拾取目標(biāo)物體。

哪怕要找出機(jī)器人沒遇見過的物體,同樣不是問題。

比如……大白(玩偶)。

對(duì)于場(chǎng)景中的同種物品,可以根據(jù)顏色等信息進(jìn)行區(qū)別。

比如分別拾取同一場(chǎng)景中藍(lán)色和紅色兩種不同的螺絲刀。

不僅如此,還可以要求機(jī)器人抓取物體的特定位置。

比如這個(gè)杯子,我們可以指定機(jī)器人抓住杯身或者杯把。

圖片

圖片

除了拾取問題,還可以讓機(jī)器人把拾到的東西放到指定位置。

比如把杯子分別放到木制和透明的支架上。

圖片

團(tuán)隊(duì)提供了完整的,沒有經(jīng)過篩選的實(shí)驗(yàn)結(jié)果。他們?cè)趯?shí)驗(yàn)室周邊隨機(jī)選取了 out-of-distribution (訓(xùn)練集外)測(cè)試樣本。

其中使用 CLIP ResNet 特征的 特征場(chǎng) 在三成以上的測(cè)試樣本中 (78%)成功抓取和放置。在基于開放性人工語言指令的任務(wù)上,成功率在 60%。該結(jié)果沒有經(jīng)過人工選擇 (cherry-picking),因此對(duì)特征場(chǎng)在零微調(diào)情境下的表現(xiàn)有客觀的描述。

圖片

那么,如何利用F3RM幫助機(jī)器人工作呢?

將2D特征投射到三維空間

下面這張圖大致描述了利用F3RM幫助機(jī)器人拾取物品工作流程。

F3RM是一個(gè)特征場(chǎng),要想讓它發(fā)揮作用,首先要得到有關(guān)數(shù)據(jù)。

下圖中的前兩個(gè)環(huán)節(jié)就是在獲取F3RM信息。

圖片


首先,機(jī)器人通過攝像頭對(duì)場(chǎng)景進(jìn)行掃描。

掃描過程會(huì)得到多個(gè)角度的RGB圖像,同時(shí)得到圖像特征。

利用NeRF技術(shù),對(duì)這些圖像做2D密度信息提取,并投射到三維空間。

圖像和密度特征的提取使用了如下的算法:

圖片

這樣就得到了這一場(chǎng)景的3D特征場(chǎng),可供機(jī)器人使用。

圖片

得到特征場(chǎng)之后,機(jī)器人還需要知道對(duì)不同的物體需要如何操作才能拾取。

這一過程當(dāng)中,機(jī)器人會(huì)學(xué)習(xí)相對(duì)應(yīng)的六個(gè)自由度的手臂動(dòng)作信息。

圖片

如果遇到陌生場(chǎng)景,則會(huì)計(jì)算與已知數(shù)據(jù)的相似度。

然后通過對(duì)動(dòng)作進(jìn)行優(yōu)化,使相似度達(dá)到最大化,以實(shí)現(xiàn)未知環(huán)境的操作。

圖片

自然語言控制的過程與上一步驟十分相似。

首先會(huì)根據(jù)指令從CLIP數(shù)據(jù)集中找到特征信息,并在機(jī)器的知識(shí)庫檢索相似度最高的DEMO。

圖片

然后同樣是對(duì)預(yù)測(cè)的姿勢(shì)進(jìn)行優(yōu)化,以達(dá)到最高的相似度。

優(yōu)化完畢之后,執(zhí)行相應(yīng)的動(dòng)作就可以把物體拾起來了。

圖片

經(jīng)過這樣的過程,就得到了低樣本量的語言控制取物機(jī)器人。

團(tuán)隊(duì)簡介

研究團(tuán)隊(duì)成員全部來自MIT的CSAIL實(shí)驗(yàn)室(計(jì)算機(jī)科學(xué)與人工智能實(shí)驗(yàn)室)。

該實(shí)驗(yàn)室是MIT最大的實(shí)驗(yàn)室,2003年由CS和AI兩個(gè)實(shí)驗(yàn)室合并而成。

共同一作是華裔博士生William Shen,和華人博后楊歌,由Phillip Isola 和Leslie Kaelbling監(jiān)督指導(dǎo)。他們來自于MIT CSAIL(計(jì)算機(jī)和人工智能實(shí)驗(yàn)室)和IAIFI(人工智能和基礎(chǔ)相互作用研究院 )。 其中楊歌是2023年CSAIL具身智能研討會(huì) (Embodied Intelligence Seminar) 的共同籌辦人.

圖片

左:William Shen,右:楊歌

論文地址:https://arxiv.org/abs/2308.07931
項(xiàng)目主頁:https://f3rm.github.io
MIT 具身智能 團(tuán)隊(duì)https://ei.csail.mit.edu/people.html
具身智能研討會(huì)https://www.youtube.com/channel/UCnXGbvgu9071i3koFooncAw

責(zé)任編輯:張燕妮 來源: 量子位
相關(guān)推薦

2022-05-18 18:31:28

機(jī)器人自然語言編程

2013-07-16 10:08:51

MIT編程語言

2025-06-19 09:15:00

自然語言訓(xùn)練模型

2021-07-13 15:18:30

機(jī)器人MIT人工智能

2021-03-25 09:25:55

機(jī)器人人工智能系統(tǒng)

2017-03-07 16:10:36

腦控機(jī)器人糾錯(cuò)

2022-09-30 15:28:05

BERT語言模型自然語言

2023-07-31 08:49:18

微軟TypeChat人工智能

2025-04-15 09:15:00

AI機(jī)器人訓(xùn)練

2020-11-05 05:31:09

聊天機(jī)器人自然語言處理人工智能

2024-10-16 16:20:00

AI機(jī)器人

2025-10-20 09:07:00

2019-10-10 17:19:35

物聯(lián)網(wǎng)機(jī)器人數(shù)據(jù)

2015-08-27 16:31:50

facebook虛擬機(jī)器人m

2021-08-17 15:47:12

機(jī)器學(xué)習(xí)自然語言神經(jīng)網(wǎng)絡(luò)

2022-03-04 10:14:46

機(jī)器人

2023-06-19 07:32:55

聊天機(jī)器人ChatGPT

2018-11-29 08:22:23

物聯(lián)網(wǎng)機(jī)器人IOT

2020-10-15 15:42:00

人工智能
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)