為什么 MySQL 單表不能超過 2000 萬行?
互聯(lián)網(wǎng)江湖上的確流傳著一個說法:單表數(shù)據(jù)量超過 500 萬行時就要進行分表分庫,已經(jīng)超過 2000 萬行時 MySQL 的性能就會急劇下降。

那么,MySQL 一張表最多能存多少數(shù)據(jù)?
今天我們就從技術(shù)層面剖析一下,MySQL 單表數(shù)據(jù)不能過大的根本原因是什么?
猜想一:是索引深度嗎?
很多人認為:數(shù)據(jù)量超過 500 萬行或 2000 萬行時,引起 B+tree 的高度增加,延長了索引的搜索路徑,進而導(dǎo)致了性能下降。事實果真如此嗎?
我們先理一下關(guān)系,MySQL 采用了索引組織表的形式組織數(shù)據(jù),葉子節(jié)點存儲數(shù)據(jù),非葉子節(jié)點存儲主鍵與頁面號的映射關(guān)系。若用戶的主鍵長度是 8 字節(jié)時,MySQL 中頁面偏移占 4 個字節(jié),在非葉子節(jié)點的時候?qū)嶋H上是 8+4=12 個字節(jié),12 個字節(jié)表示一個頁面的映射關(guān)系。
MySQL 默認是 16K 的頁面,拋開它的配置 header,大概就是 15K,因此,非葉子節(jié)點的索引頁面可放 15*1024/12=1280 條數(shù)據(jù),按照每行 1K 計算,每個葉子節(jié)點可以存 15 條數(shù)據(jù)。同理,三層就是 15*1280*1280=24576000 條數(shù)據(jù)。只有數(shù)據(jù)量達到 24576000 條時,深度才會增加為 4,所以,索引深度沒有那么容易增加,詳細數(shù)據(jù)可參考下表:

搜索路徑延長導(dǎo)致性能下降的說法,與當時的機械硬盤和內(nèi)存條件不無關(guān)系。
之前機械硬盤的 IOPS 在 100 左右,而現(xiàn)在普遍使用的 SSD 的 IOPS 已經(jīng)過萬,之前的內(nèi)存最大幾十 G,現(xiàn)在服務(wù)器內(nèi)存最大可達到 TB 級。
因此,即使深度增加,以目前的硬件資源,IO 也不會成為限制 MySQL 單表數(shù)據(jù)量的根本性因素。
那么,限制 MySQL 單表不能過大的根本性因素是什么?
猜想二:是 SMO 無法并發(fā)嗎?
我們可以嘗試從 MySQL 所采用的存儲引擎 InnoDB 本身來探究一下。
大家知道 InnoDB 引擎使用的是索引組織表,它是通過索引來組織數(shù)據(jù)的,而它采用 B+tree 作為索引的數(shù)據(jù)結(jié)構(gòu)。
B+Tree 操作非原子,所以當一個線程做結(jié)構(gòu)調(diào)整(SMO,Struction-Modification-Operation)時一般會涉及多個節(jié)點的改動。
SMO 動作過程中,此時若有另一個線程進來可能會訪問到錯誤的 B+Tree 結(jié)構(gòu),InnoDB 為了解決這個問題采用了樂觀鎖和悲觀鎖的并發(fā)控制協(xié)議。
InnoDB 對于葉子節(jié)點的修改操作如下:
方式一,先采用樂觀鎖的方式嘗試進行修改
對根節(jié)點加 S 鎖(shared lock,叫共享鎖,也稱讀鎖),依次對非葉子節(jié)點加 S 鎖。
如果葉子節(jié)點的修改不會引起 B+Tree 結(jié)構(gòu)變動,如分裂、合并等操作,那么只需要對葉子節(jié)點進行加 X 鎖(exclusive lock,叫排他鎖,也稱為寫鎖)即可完成修改。如下圖中所示 :

方式二,采用悲觀鎖的方式
如果對葉子結(jié)點的修改會觸發(fā) SMO,那么會采用悲觀鎖的方式。
采用悲觀鎖,需要重新遍歷 B+Tree,對根節(jié)點加全局 SX 鎖(SX 鎖是行鎖),然后從根節(jié)點到葉子節(jié)點可能修改的節(jié)點加 X 鎖。
在整個 SMO 過程中,根節(jié)點始終持有 SX 鎖(SX 鎖表示有意向修改這個保護的范圍,SX 鎖與 SX 鎖、X 鎖沖突,與 S 鎖不沖突),此時其他的 SMO 則需要等待。

因此,InnoDB 對于簡單的主鍵查詢比較快,因為數(shù)據(jù)都存儲在葉子節(jié)點中,但對于數(shù)據(jù)量大且改操作比較多的 TP 型業(yè)務(wù),并發(fā)會有很嚴重的瓶頸問題。
在對葉子節(jié)點的修改操作中,InnoDB 可以實現(xiàn)較好的 1 與 1、1 與 2 的并發(fā),但是無法解決 2 的并發(fā)。因為在方式 2 中,根節(jié)點始終持有 SX 鎖,必須串行執(zhí)行,等待上一個 SMO 操作完成。這樣在具有大量的 SMO 操作時,InnoDB 的 B+Tree 實現(xiàn)就會出現(xiàn)很嚴重的性能瓶頸。
解決方案
目前業(yè)界有一個更好的方案 B-Link Tree,與 B+Tree 相比,B-Link Tree 優(yōu)化了 B+Tree 結(jié)構(gòu)調(diào)整時的鎖粒度,只需要逐層加鎖,無需對 root 節(jié)點加全局鎖。因此,可以做到在 SMO 過程中寫操作的并發(fā)執(zhí)行,保持高并發(fā)下性能的穩(wěn)定。
B-Link Tree 主要改進點有 2 個:
1. 中間節(jié)點增加 link 指針,指向右兄弟節(jié)點;
2. 每個節(jié)點內(nèi)增加字段 high key,存儲該節(jié)點中最大的 key 值。
新增的 link 指針是為了解決 SMO 過程中并發(fā)寫的問題,在 SMO 過程中,B-Link Tree 對修改節(jié)點逐層加鎖,修改完一層即可放鎖,然后去加上一層節(jié)點的鎖繼續(xù)修改。這樣在 InnoDB 引擎中被 SMO 阻塞的寫操作可以有機會在 SMO 操作過程中并發(fā)進行。
如下圖所示,在節(jié)點 2 分裂為節(jié)點 2 和 4 的過程中,只需要在最后一步將父節(jié)點 1 指向新節(jié)點 4 時,對父節(jié)點 1 加鎖,其他操作均無需對父節(jié)點加鎖,更無需對 root 節(jié)點加鎖,因此,大大提升了 SMO 過程中寫操作的并發(fā)度。
圖片
由此可見,與 B+Tree 全局加鎖對比,B-Link Tree 在高并發(fā)操作下的性能是顯著優(yōu)于 B+Tree 的。GaussDB 當前采用的就是 B-Link Tree 索引數(shù)據(jù)結(jié)構(gòu)。
InnoDB 的索引組織表更容易觸發(fā) SMO
索引組織表的葉子節(jié)點,存儲主鍵以及應(yīng)對行的數(shù)據(jù),InnoDB 默認頁面為 16K,若每行數(shù)據(jù)的大小為 1000 字節(jié),每個葉子節(jié)點僅能存儲 16 行數(shù)據(jù)。
在索引組織表中,當葉子節(jié)點的扇出值過低時,SMO 的觸發(fā)將更加頻繁,進而放大了 SMO 無法并發(fā)寫的缺陷。
目前業(yè)界有一個堆組織表的數(shù)據(jù)組織方案,也是華為云數(shù)據(jù)庫 GaussDB 采用的方案。它的葉子節(jié)點存儲索引鍵以及對應(yīng)的行指針(所在的頁面編號及頁內(nèi)偏移),堆組織表葉子節(jié)點可以存更多的數(shù)據(jù),分析可得在同樣的數(shù)據(jù)量與業(yè)務(wù)并發(fā)量下,堆組織表會比索引組織表發(fā)生 SMO 概率低許多。
性能對比
在 8U32G 的兩臺服務(wù)器分別搭建了 MySQL(B+Tree 和索引組織表)與 GaussDB(B-Link Tree 和堆組織表)的環(huán)境,進行了如下性能驗證:
實驗場景:在基礎(chǔ)表的場景上,測試增量隨機插入性能。
1. 基礎(chǔ)表總大小 10G,包含主鍵隨機分布的 1000w 行數(shù)據(jù),每行數(shù)據(jù) 1k;
2. 插入主鍵隨機分布的 1000w 行數(shù)據(jù),每行數(shù)據(jù)大小 1k,測試并發(fā)插入性能。
結(jié)論:隨著并發(fā)數(shù)的上升,GaussDB 能穩(wěn)步提升系統(tǒng)的 TPS,而 MySQL 并發(fā)數(shù)的提高并不能帶來 TPS 的顯著提升。

綜上所述,MySQL 無法支持大數(shù)據(jù)量下并發(fā)修改的根本原因,是由于其索引并發(fā)控制協(xié)議的缺陷造成的,而 MySQL 選擇索引組織表,又放大了這一缺陷。所以,開源 MySQL 數(shù)據(jù)庫更適用于主鍵查詢?yōu)橹鞯暮唵螛I(yè)務(wù)場景,如互聯(lián)網(wǎng)類應(yīng)用,對于復(fù)雜的商業(yè)場景限制比較明顯。















 
 
 






 
 
 
 