8個(gè)計(jì)算機(jī)視覺深度學(xué)習(xí)中常見的Bug
給大家總結(jié)了8個(gè)計(jì)算機(jī)視覺深度學(xué)習(xí)中的常見bug,相信大家或多或少都遇到過,希望能幫助大家避免一些問題。
人是不完美的,我們經(jīng)常在軟件中犯錯(cuò)誤。有時(shí)這些錯(cuò)誤很容易發(fā)現(xiàn):你的代碼根本不能工作,你的應(yīng)用程序崩潰等等。但是有些bug是隱藏的,這使得它們更加危險(xiǎn)。
在解決深度學(xué)習(xí)問題時(shí),由于一些不確定性,很容易出現(xiàn)這種類型的bug:很容易看到web應(yīng)用程序路由請(qǐng)求是否正確,而不容易檢查你的梯度下降步驟是否正確。然而,有很多錯(cuò)誤是可以避免的。

我想分享一些我的經(jīng)驗(yàn),關(guān)于我在過去兩年的計(jì)算機(jī)視覺工作中看到或制造的錯(cuò)誤。我(在會(huì)議上)談到過這個(gè)話題(https://datafest.ru/ia/),很多人在會(huì)后告訴我:“是的,我也有很多這樣的bug。”我希望我的文章可以幫助你至少避免其中的一些問題。
1. 翻轉(zhuǎn)圖片以及關(guān)鍵點(diǎn).
假設(shè)在關(guān)鍵點(diǎn)檢測(cè)的問題上。數(shù)據(jù)看起來像一對(duì)圖像和一系列的關(guān)鍵點(diǎn)元組。其中每個(gè)關(guān)鍵點(diǎn)是一對(duì)x和y坐標(biāo)。
讓我們對(duì)這個(gè)數(shù)據(jù)進(jìn)行基礎(chǔ)的增強(qiáng):
- def flip_img_and_keypoints(img: np.ndarray, kpts: Sequence[Sequence[int]]):
 - img = np.fliplr(img)
 - h, w, *_ = img.shape
 - kpts = [(y, w - x) for y, x in kpts]
 - return img, kpts
 
看起來是正確的,嗯?我們把它可視化。
- image = np.ones((10, 10), dtype=np.float32)
 - kpts = [(0, 1), (2, 2)]
 - image_flipped, kpts_flipped = flip_img_and_keypoints(image, kpts)
 - img1 = image.copy()
 - for y, x in kpts:
 - img1[y, x] = 0
 - img2 = image_flipped.copy()
 - for y, x in kpts_flipped:
 - img2[y, x] = 0
 - _ = plt.imshow(np.hstack((img1, img2)))
 
 
不對(duì)稱,看起來很奇怪!如果我們檢查極值呢?
- image = np.ones((10, 10), dtype=np.float32)
 
不好!這是一個(gè)典型的off-by-one錯(cuò)誤。正確的代碼是這樣的:
- def flip_img_and_keypoints(img: np.ndarray, kpts: Sequence[Sequence[int]]):
 - img = np.fliplr(img)
 - h, w, *_ = img.shape
 - kpts = [(y, w - x - 1) for y, x in kpts]
 - return img, kpts
 
我們通過可視化發(fā)現(xiàn)了這個(gè)問題,但是,使用“x = 0”點(diǎn)進(jìn)行單元測(cè)試也會(huì)有所幫助。一個(gè)有趣的事實(shí)是:有一個(gè)團(tuán)隊(duì)中有三個(gè)人(包括我自己)獨(dú)立地犯了幾乎相同的錯(cuò)誤。
2. 繼續(xù)是關(guān)鍵點(diǎn)相關(guān)的問題
即使在上面的函數(shù)被修復(fù)之后,仍然存在危險(xiǎn)?,F(xiàn)在更多的是語義,而不僅僅是一段代碼。
假設(shè)需要用兩只手掌來增強(qiáng)圖像??雌饋砗馨踩菏质亲?,右翻轉(zhuǎn)。
 但是等等!我們對(duì)關(guān)鍵點(diǎn)的語義并不很了解。如果這個(gè)關(guān)鍵點(diǎn)的意思是這樣的:
- kpts = [
 - (20, 20), # left pinky
 - (20, 200), # right pinky
 - ...
 - ]
 
 
這意味著增強(qiáng)實(shí)際上改變了語義:左變成右,右變成左,但我們不交換數(shù)組中的關(guān)鍵點(diǎn)索引。它會(huì)給訓(xùn)練帶來大量的噪音和更糟糕的度量。
我們應(yīng)該吸取一個(gè)教訓(xùn):
- 在應(yīng)用增強(qiáng)或其他花哨的功能之前,了解并考慮數(shù)據(jù)結(jié)構(gòu)和語義
 - 保持你的實(shí)驗(yàn)原子性:添加一個(gè)小的變化(例如一個(gè)新的變換),檢查它如何進(jìn)行,如果分?jǐn)?shù)提高才加進(jìn)去。
 
3. 編寫自己的損失函數(shù)
熟悉語義分割問題的人可能知道IoU指標(biāo)。不幸的是,我們不能直接用SGD來優(yōu)化它,所以常用的方法是用可微損失函數(shù)來近似它。
- def iou_continuous_loss(y_pred, y_true):
 - eps = 1e-6
 - def _sum(x):
 - return x.sum(-1).sum(-1)
 - numerator = (_sum(y_true * y_pred) + eps)
 - denominator = (_sum(y_true ** 2) + _sum(y_pred ** 2)
 - - _sum(y_true * y_pred) + eps)
 - return (numerator / denominator).mean()
 
看起來不錯(cuò),我們先做個(gè)小的檢查:
- In [3]: ones = np.ones((1, 3, 10, 10))
 - ...: x1 = iou_continuous_loss(ones * 0.01, ones)
 - ...: x2 = iou_continuous_loss(ones * 0.99, ones)
 - In [4]: x1, x2
 - Out[4]: (0.010099999897990103, 0.9998990001020204)
 
在 x1中,我們計(jì)算了一些與ground truth完全不同的東西的損失,而 x2則是非常接近ground truth的東西的結(jié)果。我們預(yù)計(jì) x1會(huì)很大,因?yàn)轭A(yù)測(cè)是錯(cuò)誤的, x2應(yīng)該接近于零。怎么了?
上面的函數(shù)是對(duì)metric的一個(gè)很好的近似。metric不是一種損失:它通常(包括這種情況)越高越好。當(dāng)我們使用SGD來最小化損失時(shí),我們應(yīng)該使用一些相反的東西:
- def iou_continuous(y_pred, y_true):
 - eps = 1e-6
 - def _sum(x):
 - return x.sum(-1).sum(-1)
 - numerator = (_sum(y_true * y_pred) + eps)
 - denominator = (_sum(y_true ** 2) + _sum(y_pred ** 2)
 - - _sum(y_true * y_pred) + eps)
 - return (numerator / denominator).mean()
 - def iou_continuous_loss(y_pred, y_true):
 - return 1 - iou_continuous(y_pred, y_true)
 
這些問題可以從兩個(gè)方面來確定:
- 編寫一個(gè)單元測(cè)試,檢查損失的方向:形式化的期望,更接近ground truth應(yīng)該輸出更低的損失。
 - 運(yùn)行一個(gè)健全的檢查,讓你的模型在單個(gè)batch中過擬合。
 
4. 當(dāng)我們使用Pytorch的時(shí)候
假設(shè)有一個(gè)預(yù)先訓(xùn)練好的模型,開始做infer。
- from ceevee.base import AbstractPredictor
 - class MySuperPredictor(AbstractPredictor):
 - def __init__(self,
 - weights_path: str,
 - ):
 - super().__init__()
 - self.model = self._load_model(weights_path=weights_path)
 - def process(self, x, *kw):
 - with torch.no_grad():
 - res = self.model(x)
 - return res
 - @staticmethod
 - def _load_model(weights_path):
 - model = ModelClass()
 - weights = torch.load(weights_path, map_location='cpu')
 - model.load_state_dict(weights)
 - return model
 
這個(gè)代碼正確嗎?也許!這確實(shí)適用于某些模型。例如,當(dāng)模型沒有dropout或norm層,如 torch.nn.BatchNorm2d?;蛘弋?dāng)模型需要為每個(gè)圖像使用實(shí)際的norm統(tǒng)計(jì)量時(shí)(例如,許多基于pix2pix的架構(gòu)需要它)。
但是對(duì)于大多數(shù)計(jì)算機(jī)視覺應(yīng)用程序來說,代碼忽略了一些重要的東西:切換到評(píng)估模式。
如果試圖將動(dòng)態(tài)PyTorch圖轉(zhuǎn)換為靜態(tài)PyTorch圖,這個(gè)問題很容易識(shí)別。 torch.jit用于這種轉(zhuǎn)換。
- In [3]: model = nn.Sequential(
 - ...: nn.Linear(10, 10),
 - ...: nn.Dropout(.5)
 - ...: )
 - ...:
 - ...: traced_model = torch.jit.trace(model, torch.rand(10))
 - /Users/Arseny/.pyenv/versions/3.6.6/lib/python3.6/site-packages/torch/jit/__init__.py:914: TracerWarning: Trace had nondeterministic nodes. Did you forget call .eval() on your model? Nodes:
 - %12 : Float(10) = aten::dropout(%input, %10, %11), scope: Sequential/Dropout[1] # /Users/Arseny/.pyenv/versions/3.6.6/lib/python3.6/site-packages/torch/nn/functional.py:806:0
 - This may cause errors in trace checking. To disable trace checking, pass check_trace=False to torch.jit.trace()
 - check_tolerance, _force_outplace, True, _module_class)
 - /Users/Arseny/.pyenv/versions/3.6.6/lib/python3.6/site-packages/torch/jit/__init__.py:914: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error:
 - Not within tolerance rtol=1e-05 atol=1e-05 at input[5] (0.0 vs. 0.5454154014587402) and 5 other locations (60.00%)
 - check_tolerance, _force_outplace, True, _module_class)
 
簡(jiǎn)單的修復(fù)一下:
- In [4]: model = nn.Sequential(
 - ...: nn.Linear(10, 10),
 - ...: nn.Dropout(.5)
 - ...: )
 - ...:
 - ...: traced_model = torch.jit.trace(model.eval(), torch.rand(10))
 - # No more warnings!
 
在這種情況下, torch.jit.trace將模型運(yùn)行幾次并比較結(jié)果。這里的差別是可疑的。
然而 torch.jit.trace在這里不是萬能藥。這是一種應(yīng)該知道和記住的細(xì)微差別。
5. 復(fù)制粘貼的問題
很多東西都是成對(duì)存在的:訓(xùn)練和驗(yàn)證、寬度和高度、緯度和經(jīng)度……
- def make_dataloaders(train_cfg, val_cfg, batch_size):
 - train = Dataset.from_config(train_cfg)
 - val = Dataset.from_config(val_cfg)
 - shared_params = {'batch_size': batch_size, 'shuffle': True, 'num_workers': cpu_count()}
 - train = DataLoader(train, **shared_params)
 - val = DataLoader(train, **shared_params)
 - return train, val
 
不僅僅是我犯了愚蠢的錯(cuò)誤。例如,在非常流行的albumentations庫也有一個(gè)類似的版本。
- # https://github.com/albu/albumentations/blob/0.3.0/albumentations/augmentations/transforms.py
 - def apply_to_keypoint(self, keypoint, crop_height=0, crop_width=0, h_start=0, w_start=0, rows=0, cols=0, **params):
 - keypoint = F.keypoint_random_crop(keypoint, crop_height, crop_width, h_start, w_start, rows, cols)
 - scale_x = self.width / crop_height
 - scale_y = self.height / crop_height
 - keypoint = F.keypoint_scale(keypoint, scale_x, scale_y)
 - return keypoint
 
別擔(dān)心,已經(jīng)修改好了。
如何避免?不要復(fù)制和粘貼代碼,盡量以不需要復(fù)制和粘貼的方式編寫代碼。
- datasets = []
 - data_a = get_dataset(MyDataset(config['dataset_a']), config['shared_param'], param_a)
 - datasets.append(data_a)
 - data_b = get_dataset(MyDataset(config['dataset_b']), config['shared_param'], param_b)
 - datasets.append(data_b)
 
- datasets = []
 - for name, param in zip(('dataset_a', 'dataset_b'),
 - (param_a, param_b),
 - ):
 - datasets.append(get_dataset(MyDataset(config[name]), config['shared_param'], param))
 
6. 合適的數(shù)據(jù)類型
讓我們編寫一個(gè)新的增強(qiáng):
- def add_noise(img: np.ndarray) -> np.ndarray:
 - mask = np.random.rand(*img.shape) + .5
 - img = img.astype('float32') * mask
 - return img.astype('uint8')
 
 
圖像已被更改。這是我們所期望的嗎?嗯,也許它改變得太多了。
這里有一個(gè)危險(xiǎn)的操作:將 float32 轉(zhuǎn)換為 uint8。它可能會(huì)導(dǎo)致溢出:
- def add_noise(img: np.ndarray) -> np.ndarray:
 - mask = np.random.rand(*img.shape) + .5
 - img = img.astype('float32') * mask
 - return np.clip(img, 0, 255).astype('uint8')
 - img = add_noise(cv2.imread('two_hands.jpg')[:, :, ::-1])
 - _ = plt.imshow(img)
 
 
看起來好多了,是吧?
順便說一句,還有一種方法可以避免這個(gè)問題:不要重新發(fā)明輪子,不要從頭開始編寫增強(qiáng)代碼并使用現(xiàn)有的擴(kuò)展: albumentations.augmentations.transforms.GaussNoise。
我曾經(jīng)做過另一個(gè)同樣起源的bug。
- raw_mask = cv2.imread('mask_small.png')
 - mask = raw_mask.astype('float32') / 255
 - mask = cv2.resize(mask, (64, 64), interpolation=cv2.INTER_LINEAR)
 - mask = cv2.resize(mask, (128, 128), interpolation=cv2.INTER_CUBIC)
 - mask = (mask * 255).astype('uint8')
 - _ = plt.imshow(np.hstack((raw_mask, mask)))
 
這里出了什么問題?首先,用三次插值調(diào)整掩模的大小是一個(gè)壞主意。同樣的問題 float32到 uint8:三次插值可以輸出值大于輸入,這會(huì)導(dǎo)致溢出。
 我在做可視化的時(shí)候發(fā)現(xiàn)了這個(gè)問題。在你的訓(xùn)練循環(huán)中到處放置斷言也是一個(gè)好主意。
7. 拼寫錯(cuò)誤
假設(shè)需要對(duì)全卷積網(wǎng)絡(luò)(如語義分割問題)和一個(gè)巨大的圖像進(jìn)行推理。該圖像是如此巨大,沒有機(jī)會(huì)把它放在你的GPU中,它可以是一個(gè)醫(yī)療或衛(wèi)星圖像。
在這種情況下,可以將圖像分割成網(wǎng)格,獨(dú)立地對(duì)每一塊進(jìn)行推理,最后合并。此外,一些預(yù)測(cè)交叉可能有助于平滑邊界附近的artifacts。
- from tqdm import tqdm
 - class GridPredictor:
 - """
 - This class can be used to predict a segmentation mask for the big image
 - when you have GPU memory limitation
 - """
 - def __init__(self, predictor: AbstractPredictor, size: int, stride: Optional[int] = None):
 - self.predictor = predictor
 - self.size = size
 - self.stride = stride if stride is not None else size // 2
 - def __call__(self, x: np.ndarray):
 - h, w, _ = x.shape
 - mask = np.zeros((h, w, 1), dtype='float32')
 - weights = mask.copy()
 - for i in tqdm(range(0, h - 1, self.stride)):
 - for j in range(0, w - 1, self.stride):
 - a, b, c, d = i, min(h, i + self.size), j, min(w, j + self.size)
 - patch = x[a:b, c:d, :]
 - mask[a:b, c:d, :] += np.expand_dims(self.predictor(patch), -1)
 - weights[a:b, c:d, :] = 1
 - return mask / weights
 
有一個(gè)符號(hào)輸入錯(cuò)誤,代碼段足夠大,可以很容易地找到它。我懷疑僅僅通過代碼就能快速識(shí)別它。但是很容易檢查代碼是否正確:
- class Model(nn.Module):
 - def forward(self, x):
 - return x.mean(axis=-1)
 - model = Model()
 - grid_predictor = GridPredictor(model, size=128, stride=64)
 - simple_pred = np.expand_dims(model(img), -1)
 - grid_pred = grid_predictor(img)
 - np.testing.assert_allclose(simple_pred, grid_pred, atol=.001)
 - ---------------------------------------------------------------------------
 - AssertionError Traceback (most recent call last)
 - <ipython-input-24-a72034c717e9> in <module>
 - 9 grid_pred = grid_predictor(img)
 - 10
 - ---> 11 np.testing.assert_allclose(simple_pred, grid_pred, atol=.001)
 - ~/.pyenv/versions/3.6.6/lib/python3.6/site-packages/numpy/testing/_private/utils.py in assert_allclose(actual, desired, rtol, atol, equal_nan, err_msg, verbose)
 - 1513 header = 'Not equal to tolerance rtol=%g, atol=%g' % (rtol, atol)
 - 1514 assert_array_compare(compare, actual, desired, err_msg=str(err_msg),
 - -> 1515 verbose=verbose, header=header, equal_nan=equal_nan)
 - 1516
 - 1517
 - ~/.pyenv/versions/3.6.6/lib/python3.6/site-packages/numpy/testing/_private/utils.py in assert_array_compare(comparison, x, y, err_msg, verbose, header, precision, equal_nan, equal_inf)
 - 839 verbose=verbose, header=header,
 - 840 names=('x', 'y'), precision=precision)
 - --> 841 raise AssertionError(msg)
 - 842 except ValueError:
 - 843 import traceback
 - AssertionError:
 - Not equal to tolerance rtol=1e-07, atol=0.001
 - Mismatch: 99.6%
 - Max absolute difference: 765.
 - Max relative difference: 0.75000001
 - x: array([[[215.333333],
 - [192.666667],
 - [250. ],...
 - y: array([[[ 215.33333],
 - [ 192.66667],
 - [ 250. ],...
 
下面是 __call__方法的正確版本:
- def __call__(self, x: np.ndarray):
 - h, w, _ = x.shape
 - mask = np.zeros((h, w, 1), dtype='float32')
 - weights = mask.copy()
 - for i in tqdm(range(0, h - 1, self.stride)):
 - for j in range(0, w - 1, self.stride):
 - a, b, c, d = i, min(h, i + self.size), j, min(w, j + self.size)
 - patch = x[a:b, c:d, :]
 - mask[a:b, c:d, :] += np.expand_dims(self.predictor(patch), -1)
 - weights[a:b, c:d, :] += 1
 - return mask / weights
 
如果你仍然不知道問題出在哪里,請(qǐng)注意 weights[a:b,c:d,:]+=1這一行。
8. Imagenet歸一化
當(dāng)一個(gè)人需要進(jìn)行轉(zhuǎn)移學(xué)習(xí)時(shí),用訓(xùn)練Imagenet時(shí)的方法將圖像歸一化通常是一個(gè)好主意。
讓我們使用我們已經(jīng)熟悉的albumentations庫。
- from albumentations import Normalize
 - norm = Normalize()
 - img = cv2.imread('img_small.jpg')
 - mask = cv2.imread('mask_small.png', cv2.IMREAD_GRAYSCALE)
 - mask = np.expand_dims(mask, -1) # shape (64, 64) -> shape (64, 64, 1)
 - normed = norm(image=img, mask=mask)
 - img, mask = [normed[x] for x in ['image', 'mask']]
 - def img_to_batch(x):
 - x = np.transpose(x, (2, 0, 1)).astype('float32')
 - return torch.from_numpy(np.expand_dims(x, 0))
 - img, mask = map(img_to_batch, (img, mask))
 - criterion = F.binary_cross_entropy
 
現(xiàn)在是時(shí)候訓(xùn)練一個(gè)網(wǎng)絡(luò)并對(duì)單個(gè)圖像進(jìn)行過度擬合了——正如我所提到的,這是一種很好的調(diào)試技術(shù):
- model_a = UNet(3, 1)
 - optimizer = torch.optim.Adam(model_a.parameters(), lr=1e-3)
 - losses = []
 - for t in tqdm(range(20)):
 - loss = criterion(model_a(img), mask)
 - losses.append(loss.item())
 - optimizer.zero_grad()
 - loss.backward()
 - optimizer.step()
 - _ = plt.plot(losses)
 
 曲率看起來很好,但是交叉熵的損失值-300是不可預(yù)料的。是什么問題?
歸一化處理圖像效果很好,但是mask沒有:需要手動(dòng)縮放到 [0,1]。
- model_b = UNet(3, 1)
 - optimizer = torch.optim.Adam(model_b.parameters(), lr=1e-3)
 - losses = []
 - for t in tqdm(range(20)):
 - loss = criterion(model_b(img), mask / 255.)
 - losses.append(loss.item())
 - optimizer.zero_grad()
 - loss.backward()
 - optimizer.step()
 - _ = plt.plot(losses)
 
 
訓(xùn)練循環(huán)的簡(jiǎn)單運(yùn)行時(shí)斷言(例如 assertmask.max()<=1會(huì)很快檢測(cè)到問題。同樣,也可以是單元測(cè)試。
總結(jié)
- 測(cè)試很有必要
 - 運(yùn)行時(shí)斷言可以用于訓(xùn)練的pipeline;
 - 可視化是一種幸福
 - 復(fù)制粘貼是一種詛咒
 - 沒有什么是靈丹妙藥,一個(gè)機(jī)器學(xué)習(xí)工程師必須總是小心(或只是受苦)。
 















 
 
 













 
 
 
 