偷偷摘套内射激情视频,久久精品99国产国产精,中文字幕无线乱码人妻,中文在线中文a,性爽19p

2019年10大機(jī)器學(xué)習(xí)Q&A,面試應(yīng)知!

人工智能 機(jī)器學(xué)習(xí) 開(kāi)發(fā)工具
本文整理了一些最常見(jiàn)的機(jī)器學(xué)習(xí)面試問(wèn)題及其相應(yīng)的回答。機(jī)器學(xué)習(xí)有志者以及經(jīng)驗(yàn)豐富的ML專業(yè)人員可以在面試前以此鞏固其基礎(chǔ)知識(shí)。

新興技術(shù)風(fēng)靡全球,它們所帶來(lái)的創(chuàng)新、機(jī)遇和威脅也是前所未有的。而這些領(lǐng)域所需要的專家人才也隨之增長(zhǎng)。

根據(jù)最新的行業(yè)報(bào)告顯示,新興技術(shù)領(lǐng)域的工作,如機(jī)器學(xué)習(xí)、人工智能和數(shù)據(jù)科學(xué)等,是最熱門的新興職業(yè)。從事此類新興技術(shù)工作既能獲得豐厚的利潤(rùn),又能開(kāi)發(fā)智力。

本文整理了一些最常見(jiàn)的機(jī)器學(xué)習(xí)面試問(wèn)題及其相應(yīng)的回答。機(jī)器學(xué)習(xí)有志者以及經(jīng)驗(yàn)豐富的ML專業(yè)人員可以在面試前以此鞏固其基礎(chǔ)知識(shí)。

[[276285]]

1. 機(jī)器學(xué)習(xí)和深度學(xué)習(xí)有什么區(qū)別?

機(jī)器學(xué)習(xí)是人工智能的一個(gè)子集,為機(jī)器提供了無(wú)需任何顯式編程就能自動(dòng)學(xué)習(xí)和改進(jìn)的能力。而深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)子集,其人工神經(jīng)網(wǎng)絡(luò)能夠做出直覺(jué)決策。

2. 如何理解召回率和精度這兩個(gè)術(shù)語(yǔ)?

召回率又稱真陽(yáng)性率,是模型所需的陽(yáng)性例數(shù)與整個(gè)數(shù)據(jù)中可用陽(yáng)性例數(shù)的比值。

精度基于預(yù)測(cè),又稱陽(yáng)性預(yù)測(cè)值,是模型所需的準(zhǔn)確陽(yáng)性例數(shù)測(cè)量值與模型實(shí)際需要的陽(yáng)性例數(shù)之間的比值。

3. 監(jiān)督機(jī)器學(xué)習(xí)和無(wú)監(jiān)督機(jī)器學(xué)習(xí)有什么區(qū)別?

在監(jiān)督學(xué)習(xí)中,機(jī)器在標(biāo)記數(shù)據(jù)的幫助下進(jìn)行訓(xùn)練,即帶有正確答案標(biāo)記的數(shù)據(jù)。而在無(wú)監(jiān)督機(jī)器學(xué)習(xí)中,模型自主發(fā)現(xiàn)信息進(jìn)行學(xué)習(xí)。與監(jiān)督學(xué)習(xí)模型相比,無(wú)監(jiān)督模型更適合于執(zhí)行困難的處理任務(wù)。

4. 什么是K-means和KNN?

K-means是一種用于處理聚類問(wèn)題的無(wú)監(jiān)督算法,KNN或K近鄰是一種用于處理回歸和分類的監(jiān)督算法。

5. 造成分類不同于回歸的原因是什么?

這兩個(gè)概念都是監(jiān)督機(jī)器學(xué)習(xí)技術(shù)的一個(gè)重要方面。分類將輸出劃分為不同的類別進(jìn)行預(yù)測(cè)。而回歸模型通常用于找出預(yù)測(cè)和變量之間的關(guān)系。分類和回歸的關(guān)鍵區(qū)別在于,前者的輸出變量是離散的,而后者是連續(xù)的。

6. 如何處理數(shù)據(jù)集中的缺失值?

數(shù)據(jù)科學(xué)家面臨的最大挑戰(zhàn)之一與數(shù)據(jù)丟失問(wèn)題有關(guān)??梢酝ㄟ^(guò)多種方式對(duì)缺失值進(jìn)行歸因,包括分配唯一類別、刪除行、使用均值/中值/眾數(shù)替換、使用支持缺失值的算法以及預(yù)測(cè)缺失值等等。

7. 如何理解歸納邏輯編程(ILP)?

歸納邏輯編程是機(jī)器學(xué)習(xí)的子領(lǐng)域,通過(guò)使用邏輯編程開(kāi)發(fā)預(yù)測(cè)模型來(lái)搜索數(shù)據(jù)中的模式。該過(guò)程假定邏輯程序是一種假設(shè)或背景知識(shí)。

8. 需要采取哪些步驟來(lái)防止特定模型出現(xiàn)過(guò)擬合問(wèn)題?

在訓(xùn)練中得到大量數(shù)據(jù)時(shí),模型開(kāi)始學(xué)習(xí)數(shù)據(jù)集中的干擾信息和其他錯(cuò)誤數(shù)據(jù)。這使得模型難以泛化除訓(xùn)練集外的新樣本。有三種方法可以避免機(jī)器學(xué)習(xí)中的過(guò)擬合。第一,保持模型簡(jiǎn)單;第二,使用交叉驗(yàn)證技術(shù);第三,使用正則化技術(shù),例如LASSO。

9. 什么是集成學(xué)習(xí)?

集成方法又稱多學(xué)習(xí)器系統(tǒng)或基于委員會(huì)的學(xué)習(xí) 。集合方法是一種學(xué)習(xí)算法,能構(gòu)建分類器集,再分類新數(shù)據(jù),對(duì)其預(yù)測(cè)進(jìn)行選擇。該方法訓(xùn)練了許多假設(shè)以解決相同的問(wèn)題。集成建模的最佳示例是隨機(jī)森林,其中許多決策樹(shù)用于預(yù)測(cè)結(jié)果。

10. 機(jī)器學(xué)習(xí)項(xiàng)目中需要哪些步驟?

要實(shí)現(xiàn)一個(gè)好的工作模型,需要采取的關(guān)鍵步驟是收集數(shù)據(jù)、準(zhǔn)備數(shù)據(jù)、選擇機(jī)器學(xué)習(xí)模型、模型訓(xùn)練、評(píng)估模型、調(diào)整參數(shù),最后是預(yù)測(cè)。

責(zé)任編輯:趙寧寧 來(lái)源: 讀芯術(shù)
相關(guān)推薦

2019-02-14 08:10:22

機(jī)器學(xué)習(xí)API程序

2019-07-17 09:59:46

JavaScriptJava機(jī)器學(xué)習(xí)

2019-02-20 15:42:28

機(jī)器學(xué)習(xí)人工智能計(jì)算機(jī)

2010-05-10 14:11:41

負(fù)載均衡算法

2010-05-25 17:57:24

VoIP網(wǎng)絡(luò)電話

2019-03-20 07:50:47

機(jī)器學(xué)習(xí)算法線性回歸

2022-08-26 14:46:31

機(jī)器學(xué)習(xí)算法線性回歸

2011-01-24 15:46:30

金山網(wǎng)絡(luò)T盤T盤

2019-12-25 09:13:58

Python機(jī)器學(xué)習(xí)編程語(yǔ)言

2019-08-07 17:25:47

物聯(lián)網(wǎng)企業(yè)初創(chuàng)公司

2010-03-16 10:45:37

家庭無(wú)線WLAN技術(shù)

2010-04-01 16:18:55

無(wú)線上網(wǎng)卡流量

2021-08-17 08:51:38

機(jī)器學(xué)習(xí)庫(kù)人工智能

2020-12-08 13:42:41

機(jī)器學(xué)習(xí)人工智能

2020-12-03 08:01:42

機(jī)器學(xué)習(xí)人工智能AI

2019-07-09 09:54:26

機(jī)器人開(kāi)發(fā)電子商務(wù)

2011-05-31 10:50:36

程序員

2020-11-08 13:46:18

數(shù)據(jù)科學(xué)機(jī)器學(xué)習(xí)算法

2019-02-11 12:02:25

大數(shù)據(jù)智能云計(jì)算

2019-12-05 12:46:47

人工智能機(jī)器學(xué)習(xí)初創(chuàng)公司
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)