偷偷摘套内射激情视频,久久精品99国产国产精,中文字幕无线乱码人妻,中文在线中文a,性爽19p

提高Python運行效率的六個竅門

開發(fā) 后端
Python是一門優(yōu)秀的語言,它能讓你在短時間內通過極少量代碼就能完成許多操作。不喜歡Python的人經常會吐嘈Python運行太慢。但是,事實并非如此。嘗試以下六個竅門,來為你的Python應用提速。

Python

Python是一門優(yōu)秀的語言,它能讓你在短時間內通過極少量代碼就能完成許多操作。不僅如此,它還輕松支持多任務處理,比如多進程。

不喜歡Python的人經常會吐嘈Python運行太慢。但是,事實并非如此。嘗試以下六個竅門,來為你的Python應用提速。

竅門一:關鍵代碼使用外部功能包

Python簡化了許多編程任務,但是對于一些時間敏感的任務,它的表現(xiàn)經常不盡人意。使用C/C++或機器語言的外部功能包處理時間敏感任務,可以有效提高應用的運行效率。這些功能包往往依附于特定的平臺,因此你要根據自己所用的平臺選擇合適的功能包。簡而言之,這個竅門要你犧牲應用的可移植性以換取只有通過對底層主機的直接編程才能獲得的運行效率。以下是一些你可以選擇用來提升效率的功能包:

  • Cython
  • Pylnlne
  • PyPy
  • Pyrex

這些功能包的用處各有不同。比如說,使用C語言的數(shù)據類型,可以使涉及內存操作的任務更高效或者更直觀。Pyrex就能幫助Python延展出這樣的功能。Pylnline能使你在Python應用中直接使用C代碼。內聯(lián)代碼是獨立編譯的,但是它把所有編譯文件都保存在某處,并能充分利用C語言提供的高效率。

竅門二:在排序時使用鍵

Python含有許多古老的排序規(guī)則,這些規(guī)則在你創(chuàng)建定制的排序方法時會占用很多時間,而這些排序方法運行時也會拖延程序實際的運行速度。***的排序方法其實是盡可能多地使用鍵和內置的sort()方法。譬如,拿下面的代碼來說:

  1. import operator 
  2.  
  3. somelist = [(1, 5, 8), (6, 2, 4), (9, 7, 5)] 
  4.  
  5. somelist.sort(key=operator.itemgetter(0)) 
  6.  
  7. somelist 
  8.  
  9. #Output = [(1, 5, 8), (6, 2, 4), (9, 7, 5)] 
  10.  
  11. somelist.sort(key=operator.itemgetter(1)) 
  12.  
  13. somelist 
  14.  
  15. #Output = [(6, 2, 4), (1, 5, 8), (9, 7, 5)] 
  16.  
  17. somelist.sort(key=operator.itemgetter(2)) 
  18.  
  19. somelist 
  20.  
  21. #Output = [(6, 2, 4), (9, 7, 5), (1, 5, 8)],  

在每段例子里,list都是根據你選擇的用作關鍵參數(shù)的索引進行排序的。這個方法不僅對數(shù)值類型有效,還同樣適用于字符串類型。

竅門三:針對循環(huán)的優(yōu)化

每一種編程語言都強調***化的循環(huán)方案。當使用Python時,你可以借助豐富的技巧讓循環(huán)程序跑得更快。然而,開發(fā)者們經常遺忘的一個技巧是:盡量避免在循環(huán)中訪問變量的屬性。譬如,拿下面的代碼來說:

  1. lowerlist = ['this''is''lowercase'
  2.  
  3. upper = str.upper 
  4.  
  5. upperlist = [] 
  6.  
  7. append = upperlist.append 
  8.  
  9. for word in lowerlist: 
  10.  
  11. append(upper(word)) 
  12.  
  13. print(upperlist) 
  14.  
  15. #Output = ['THIS''IS''LOWERCASE' 

每次你調用str.upper, Python都會計算這個式子的值。然而,如果你把這個求值賦值給一個變量,那么求值的結果就能提前知道,Python程序就能運行得更快。因此,關鍵就是盡可能減小Python在循環(huán)中的工作量。因為Python解釋執(zhí)行的特性,在上面的例子中會大大減慢它的速度。

(注意:優(yōu)化循環(huán)的方法還有很多,這只是其中之一。比如,很多程序員會認為,列表推導式是提高循環(huán)速度的***方法。關鍵在于,優(yōu)化循環(huán)方案是提高應用程序運行速度的上佳選擇。)

竅門四:使用較新的Python版本

如果你在網上搜索Python,你會發(fā)現(xiàn)數(shù)不盡的信息都是關于如何升級Python版本。通常,每個版本的Python都會包含優(yōu)化內容,使其運行速度優(yōu)于之前的版本。但是,限制因素在于,你最喜歡的函數(shù)庫有沒有同步更新支持新的Python版本。與其爭論函數(shù)庫是否應該更新,關鍵在于新的Python版本是否足夠高效來支持這一更新。

你要保證自己的代碼在新版本里還能運行。你需要使用新的函數(shù)庫才能體驗新的Python版本,然后你需要在做出關鍵性的改動時檢查自己的應用。只有當你完成必要的修正之后,你才能體會新版本的不同。

然而,如果你只是確保自己的應用在新版本中可以運行,你很可能會錯過新版本提供的新特性。一旦你決定更新,請分析你的應用在新版本下的表現(xiàn),并檢查可能出問題的部分,然后優(yōu)先針對這些部分應用新版本的特性。只有這樣,用戶才能在更新之初就覺察到應用性能的改觀。

竅門五:嘗試多種編碼方法

每次創(chuàng)建應用時都使用同一種編碼方法幾乎無一例外會導致應用的運行效率不盡人意。可以在程序分析時嘗試一些試驗性的辦法。譬如說,在處理字典中的數(shù)據項時,你既可以使用安全的方法,先確保數(shù)據項已經存在再進行更新,也可以直接對數(shù)據項進行更新,把不存在的數(shù)據項作為特例分開處理。請看下面***段代碼:

  1. n = 16 
  2.  
  3. myDict = {} 
  4.  
  5. for i in range(0, n): 
  6.  
  7. char = 'abcd'[i%4] 
  8.  
  9. if char not in myDict: 
  10.  
  11. myDict[char] = 0 
  12.  
  13. myDict[char] += 1 
  14.  
  15. print(myDict)  

當一開始myDict為空時,這段代碼會跑得比較快。然而,通常情況下,myDict填滿了數(shù)據,至少填有大部分數(shù)據,這時換另一種方法會更有效率。

  1. n = 16 
  2.  
  3. myDict = {} 
  4.  
  5. for i in range(0, n): 
  6.  
  7. char = 'abcd'[i%4] 
  8.  
  9. try: 
  10.  
  11. myDict[char] += 1 
  12.  
  13. except KeyError: 
  14.  
  15. myDict[char] = 1 
  16.  
  17. print(myDict)  

在兩種方法中輸出結果都是一樣的。區(qū)別在于輸出是如何獲得的。跳出常規(guī)的思維模式,創(chuàng)建新的編程技巧能使你的應用更有效率。

竅門六:交叉編譯你的應用

開發(fā)者有時會忘記計算機其實并不理解用來創(chuàng)建現(xiàn)代應用程序的編程語言。計算機理解的是機器語言。為了運行你的應用,你借助一個應用將你所編的人類可讀的代碼轉換成機器可讀的代碼。有時,你用一種諸如Python這樣的語言編寫應用,再以C++這樣的語言運行你的應用,這在運行的角度來說,是可行的。關鍵在于,你想你的應用完成什么事情,而你的主機系統(tǒng)能提供什么樣的資源。

Nuitka是一款有趣的交叉編譯器,能將你的Python代碼轉化成C++代碼。這樣,你就可以在native模式下執(zhí)行自己的應用,而無需依賴于解釋器程序。你會發(fā)現(xiàn)自己的應用運行效率有了較大的提高,但是這會因平臺和任務的差異而有所不同。

(注意:Nuitka現(xiàn)在還處在測試階段,所以在實際應用中請多加注意。實際上,當下***還是把它用于實驗。此外,關于交叉編譯是否為提高運行效率的***方法還存在討論的空間。開發(fā)者已經使用交叉編譯多年,用來提高應用的速度。記住,每一種解決辦法都有利有弊,在把它用于生產環(huán)境之前請仔細權衡。)

在使用交叉編譯器時,記得確保它支持你所用的Python版本。Nuitka支持Python2.6, 2.7, 3.2和3.3。為了讓解決方案生效,你需要一個Python解釋器和一個C++編譯器。Nuitka支持許多C++編譯器,其中包括Microsoft Visual Studio, MinGW 和 Clang/LLVM。

交叉編譯可能造成一些嚴重問題。比如,在使用Nuitka時,你會發(fā)現(xiàn)即便是一個小程序也會消耗巨大的驅動空間。因為Nuitka借助一系列的動態(tài)鏈接庫(DDLs)來執(zhí)行Python的功能。因此,如果你用的是一個資源很有限的系統(tǒng),這種方法或許不太可行。

結論

前文所述的六個竅門都能幫助你創(chuàng)建運行更有效率的Python應用。但是銀彈是不存在的。上述的這些竅門不一定每次都能奏效。在特定的Python的版本下,有的竅門或許比其他的表現(xiàn)更好,但這有時候甚至取決于平臺的差異。你需要總結分析你的應用,找到它效率低下的部分,然后嘗試這些竅門,找到解決問題的***方法。 

責任編輯:龐桂玉 來源: Python開發(fā)者
相關推薦

2024-01-16 15:19:29

Python內存

2019-01-07 07:57:27

物聯(lián)網運營效率IOT

2022-08-17 10:14:17

數(shù)據中心能源消耗制冷

2014-08-20 13:59:13

Linux

2017-06-06 15:10:42

框架APP設計

2020-03-29 11:46:16

前端開發(fā)前端工具

2013-07-05 16:08:40

開發(fā)效率

2019-07-05 09:00:00

軟件開發(fā)數(shù)據

2023-04-27 13:16:45

2023-01-09 10:53:12

首席信息官IT風險

2025-05-16 09:15:30

2021-10-27 10:15:25

Python新特性編程語言

2022-03-26 09:32:54

Python編程映射

2022-08-20 19:12:22

編程竅門

2021-11-11 15:13:15

人工智能容器技術

2024-05-10 09:28:57

Python面向對象代碼

2022-11-15 16:54:54

2012-09-03 10:16:43

云計算虛擬化敏捷開發(fā)

2022-05-13 09:55:19

Python內置函數(shù)

2024-02-17 22:05:58

Python開發(fā)
點贊
收藏

51CTO技術棧公眾號