Oracle使用hash分區(qū)優(yōu)化分析函數(shù)查詢
在ORACLE中的分析函數(shù)都是基于某幾個(gè)字段劃分計(jì)算窗口,然后在窗口內(nèi)進(jìn)行聚合,排名,等等計(jì)算。我想如果我們數(shù)據(jù)表的hash分區(qū)字段與分析函數(shù)中的partition by 字段一致的時(shí)候,應(yīng)該可以大大加快分析函數(shù)的運(yùn)行效率。因?yàn)槊總€(gè)分區(qū)上的數(shù)據(jù)可以單獨(dú)進(jìn)行運(yùn)算?;ゲ桓缮?,下面試驗(yàn)來(lái)驗(yàn)證我的想法.
***步:創(chuàng)建一個(gè)分區(qū)表和普通表,表結(jié)構(gòu)與DBA_OBJECTS一致:
create table t_partition_hash(
object_name varchar2(128),
subobject_name varchar2(30),
object_id number,
data_object_id number,
object_type varchar2(19),
created date,
last_ddl_time date,
timestamp varchar2(19),
status varchar2(7),
temporary varchar2(1),
generated varchar2(1),
secondary varchar2(1)
)
partition by hash(object_type)(
partition t_hash_p1 tablespace USERS,
partition t_hash_p2 tablespace USERS,
partition t_hash_p3 tablespace USERS,
partition t_hash_p4 tablespace USERS,
partition t_hash_p5 tablespace USERS,
partition t_hash_p6 tablespace USERS,
partition t_hash_p7 tablespace USERS,
partition t_hash_p8 tablespace USERS
);create table t_big_hash(
object_name varchar2(128),
subobject_name varchar2(30),
object_id number,
data_object_id number,
object_type varchar2(19),
created date,
last_ddl_time date,
timestamp varchar2(19),
status varchar2(7),
temporary varchar2(1),
generated varchar2(1),
secondary varchar2(1)
);
第二步:準(zhǔn)備數(shù)據(jù),從dba_object中把數(shù)據(jù)插入到兩個(gè)表??偣膊迦霐?shù)據(jù)1610880。
insert into t_partition_hash select * from dba_objects; |
第三步:本采用RANK函數(shù)對(duì)兩個(gè)表進(jìn)行查詢。
begin |
使用hash分區(qū)表總共執(zhí)行5次的運(yùn)行時(shí)間分別為:46.156s,33.39s,40.516s 34.875s 38.938s.
begin |
由此可見(jiàn)采用有效的HASH分區(qū)表可以有效提升分析函數(shù)在oracle中的執(zhí)行效率。我相信隨著數(shù)據(jù)量的增加,將會(huì)有更明顯的效果,回頭再測(cè)試一個(gè)項(xiàng)目中遇到的類似問(wèn)題。
【編輯推薦】