偷偷摘套内射激情视频,久久精品99国产国产精,中文字幕无线乱码人妻,中文在线中文a,性爽19p

一文了解:Python 并發(fā)、并行、同步、異步、阻塞、非阻塞

開發(fā) 前端
在 Python 中,理解并發(fā)(Concurrency)、并行(Parallelism)、同步(Synchronization)、異步(Asynchronous)、阻塞(Blocking)和非阻塞(Non-blocking)是非常重要的,因為它們是構(gòu)建高性能應(yīng)用程序的關(guān)鍵概念。

前言

在 Python 中,理解并發(fā)(Concurrency)、并行(Parallelism)、同步(Synchronization)、異步(Asynchronous)、阻塞(Blocking)和非阻塞(Non-blocking)是非常重要的,因為它們是構(gòu)建高性能應(yīng)用程序的關(guān)鍵概念。

1. 并發(fā)(Concurrency)

并發(fā)是指程序在同一時間段內(nèi)可以處理多個任務(wù)的能力。具體來說,程序看起來像是同時執(zhí)行多個任務(wù),但實際上它們是在交替執(zhí)行。

1.1 示例:多線程

import threading
import time
def worker():
    print(f"Thread {threading.current_thread().name} started")
    time.sleep(2)
    print(f"Thread {threading.current_thread().name} finished")
# 創(chuàng)建多個線程
threads = []
for i in range(5):
    thread = threading.Thread(target=worker, name=f"Thread-{i}")
    threads.append(thread)
    thread.start()
# 等待所有線程完成
for thread in threads:
    thread.join()
print("All threads finished")

2. 并行(Parallelism)

并行是指程序在同一時間可以真正同時執(zhí)行多個任務(wù)的能力。通常需要硬件支持,例如多核處理器。

2.1 示例:多進程

import multiprocessing
def worker():
    print(f"Process {multiprocessing.current_process().name} started")
    time.sleep(2)
    print(f"Process {multiprocessing.current_process().name} finished")
# 創(chuàng)建多個進程
processes = []
for i in range(5):
    process = multiprocessing.Process(target=worker, name=f"Process-{i}")
    processes.append(process)
    process.start()
# 等待所有進程完成
for process in processes:
    process.join()
print("All processes finished")

3. 同步(Synchronization)

同步是指在多線程或多進程環(huán)境中,通過鎖或其他機制確保資源的安全訪問。

3.1 示例:鎖(Lock)

import threading
def worker(lock):
    with lock:
        print(f"Thread {threading.current_thread().name} started")
        time.sleep(2)
        print(f"Thread {threading.current_thread().name} finished")
lock = threading.Lock()
# 創(chuàng)建多個線程
threads = []
for i in range(5):
    thread = threading.Thread(target=worker, args=(lock,), name=f"Thread-{i}")
    threads.append(thread)
    thread.start()
# 等待所有線程完成
for thread in threads:
    thread.join()
print("All threads finished")

4. 異步(Asynchronous)

異步是指程序可以在等待某個操作完成的同時繼續(xù)執(zhí)行其他任務(wù)。異步編程通常使用回調(diào)函數(shù)或協(xié)程。

4.1 示例:異步 I/O(使用 asyncio)

import asyncio
async def worker():
    print(f"Worker {asyncio.current_task().get_name()} started")
    await asyncio.sleep(2)
    print(f"Worker {asyncio.current_task().get_name()} finished")
async def main():
    tasks = []
    for i in range(5):
        task = asyncio.create_task(worker(), name=f"Worker-{i}")
        tasks.append(task)
    await asyncio.gather(*tasks)
asyncio.run(main())

5. 阻塞(Blocking)

阻塞是指程序在執(zhí)行某個操作時會暫停執(zhí)行,直到該操作完成。例如,當執(zhí)行一個阻塞的 I/O 操作時,程序會等待直到 I/O 操作完成。

5.1 示例:阻塞 I/O

import time
def blocking_io():
    print("Starting blocking IO")
    time.sleep(5)
    print("Finished blocking IO")
blocking_io()

6. 非阻塞(Non-blocking)

非阻塞是指程序在執(zhí)行某個操作時不會暫停執(zhí)行,而是繼續(xù)執(zhí)行其他任務(wù)。通常用于網(wǎng)絡(luò) I/O 或文件 I/O。

6.1 示例:非阻塞 I/O(使用 select)

import select
import socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server_socket.bind(('localhost', 8000))
server_socket.listen(5)
sockets_list = [server_socket]
def handle_client(client_socket):
    request = client_socket.recv(1024)
    print(f"Received: {request.decode()}")
    response = "Hello, World!\n"
    client_socket.send(response.encode())
    client_socket.close()
while True:
    read_sockets, _, exception_sockets = select.select(sockets_list, [], sockets_list)
    for notified_socket in read_sockets:
        if notified_socket == server_socket:
            client_socket, client_address = server_socket.accept()
            sockets_list.append(client_socket)
        else:
            handle_client(notified_socket)
    for notified_socket in exception_sockets:
        sockets_list.remove(notified_socket)
        notified_socket.close()
接口自動化相關(guān)代碼示例,供參考:

1. 并發(fā)(Concurrency)

1.1 示例:多線程發(fā)送 HTTP 請求

import threading
import requests
import time
def send_request(url, headers, payload):
    response = requests.post(url, headers=headers, jsnotallow=payload)
    print(f"Response status code: {response.status_code}")
    print(f"Response content: {response.text}")
# 測試數(shù)據(jù)
test_cases = [
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token1"},
        "payload": {"key": "value1"}
    },
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token2"},
        "payload": {"key": "value2"}
    }
]
# 創(chuàng)建線程列表
threads = []
# 創(chuàng)建并啟動線程
for test_case in test_cases:
    thread = threading.Thread(target=send_request, args=(test_case["url"], test_case["headers"], test_case["payload"]))
    threads.append(thread)
    thread.start()
# 等待所有線程完成
for thread in threads:
    thread.join()
print("All requests finished")

2. 并行(Parallelism)

2.1 示例:多進程發(fā)送 HTTP 請求

import multiprocessing
import requests
import time
def send_request(url, headers, payload):
    response = requests.post(url, headers=headers, jsnotallow=payload)
    print(f"Response status code: {response.status_code}")
    print(f"Response content: {response.text}")
# 測試數(shù)據(jù)
test_cases = [
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token1"},
        "payload": {"key": "value1"}
    },
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token2"},
        "payload": {"key": "value2"}
    }
]
# 創(chuàng)建進程列表
processes = []
# 創(chuàng)建并啟動進程
for test_case in test_cases:
    process = multiprocessing.Process(target=send_request, args=(test_case["url"], test_case["headers"], test_case["payload"]))
    processes.append(process)
    process.start()
# 等待所有進程完成
for process in processes:
    process.join()
print("All requests finished")

3. 同步(Synchronization)

3.1 示例:使用鎖同步多線程

import threading
import requests
import time
def send_request(lock, url, headers, payload):
    with lock:
        response = requests.post(url, headers=headers, jsnotallow=payload)
        print(f"Response status code: {response.status_code}")
        print(f"Response content: {response.text}")
# 測試數(shù)據(jù)
test_cases = [
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token1"},
        "payload": {"key": "value1"}
    },
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token2"},
        "payload": {"key": "value2"}
    }
]
# 創(chuàng)建鎖
lock = threading.Lock()
# 創(chuàng)建線程列表
threads = []
# 創(chuàng)建并啟動線程
for test_case in test_cases:
    thread = threading.Thread(target=send_request, args=(lock, test_case["url"], test_case["headers"], test_case["payload"]))
    threads.append(thread)
    thread.start()
# 等待所有線程完成
for thread in threads:
    thread.join()
print("All requests finished")

4. 異步(Asynchronous)

4.1 示例:使用 asyncio 發(fā)送異步 HTTP 請求

import asyncio
import aiohttp
async def send_request(url, headers, payload):
    async with aiohttp.ClientSession() as session:
        async with session.post(url, headers=headers, jsnotallow=payload) as response:
            print(f"Response status code: {response.status}")
            response_text = await response.text()
            print(f"Response content: {response_text}")
# 測試數(shù)據(jù)
test_cases = [
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token1"},
        "payload": {"key": "value1"}
    },
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token2"},
        "payload": {"key": "value2"}
    }
]
async def main():
    tasks = []
    for test_case in test_cases:
        task = asyncio.create_task(send_request(test_case["url"], test_case["headers"], test_case["payload"]))
        tasks.append(task)
    await asyncio.gather(*tasks)
asyncio.run(main())

5. 阻塞(Blocking)

5.1 示例:阻塞式發(fā)送 HTTP 請求

import requests
import time
def send_request(url, headers, payload):
    response = requests.post(url, headers=headers, jsnotallow=payload)
    print(f"Response status code: {response.status_code}")
    print(f"Response content: {response.text}")
# 測試數(shù)據(jù)
test_cases = [
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token1"},
        "payload": {"key": "value1"}
    },
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token2"},
        "payload": {"key": "value2"}
    }
]
# 依次發(fā)送請求
for test_case in test_cases:
    send_request(test_case["url"], test_case["headers"], test_case["payload"])
print("All requests finished")

6. 非阻塞(Non-blocking)

6.1 示例:使用 select 發(fā)送非阻塞 HTTP 請求

import select
import socket
import requests
import time
def send_request(url, headers, payload):
    response = requests.post(url, headers=headers, jsnotallow=payload)
    print(f"Response status code: {response.status_code}")
    print(f"Response content: {response.text}")
# 測試數(shù)據(jù)
test_cases = [
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token1"},
        "payload": {"key": "value1"}
    },
    {
        "url": "https://api.example.com/v1/resource",
        "headers": {"Authorization": "Bearer token2"},
        "payload": {"key": "value2"}
    }
]
# 創(chuàng)建套接字列表
sockets_list = []
# 創(chuàng)建并啟動套接字
for test_case in test_cases:
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.connect(("localhost", 8000))
    sockets_list.append(sock)
# 監(jiān)聽套接字
while sockets_list:
    ready_to_read, _, _ = select.select(sockets_list, [], [])
    for sock in ready_to_read:
        send_request(test_cases[sockets_list.index(sock)]["url"], test_cases[sockets_list.index(sock)]["headers"], test_cases[sockets_list.index(sock)]["payload"])
        sockets_list.remove(sock)
print("All requests finished")

7. 總結(jié)

通過以上示例,我們詳細介紹了 Python 中的幾個關(guān)鍵概念:

并發(fā)(Concurrency):在同一時間段內(nèi)處理多個任務(wù)。

并行(Parallelism):在同一時間真正同時執(zhí)行多個任務(wù)。

同步(Synchronization):確保多線程或多進程環(huán)境下的資源安全訪問。

異步(Asynchronous):在等待某個操作完成的同時繼續(xù)執(zhí)行其他任務(wù)。

阻塞(Blocking):在執(zhí)行某個操作時會暫停執(zhí)行,直到該操作完成。

非阻塞(Non-blocking):在執(zhí)行某個操作時不會暫停執(zhí)行,而是繼續(xù)執(zhí)行其他任務(wù)。

責任編輯:華軒 來源: 測試開發(fā)學習交流
相關(guān)推薦

2019-07-23 11:01:57

Python同步異步

2012-10-10 10:00:27

同步異步開發(fā)Java

2012-02-22 21:15:41

unixIO阻塞

2018-03-28 08:52:53

阻塞非阻塞I

2015-07-03 10:12:04

編程同步非阻塞

2016-11-28 09:08:43

java系統(tǒng)異步非阻塞

2021-03-04 08:34:55

同步阻塞非阻塞

2021-01-10 11:21:33

JavaScript語言開發(fā)

2023-12-15 09:45:21

阻塞接口

2025-02-17 13:23:34

Python同步阻塞MySQL

2024-08-05 09:16:54

2023-12-06 07:28:47

阻塞IO異步IO

2021-06-04 18:14:15

阻塞非阻塞tcp

2025-10-09 05:11:00

I/O模型非阻塞socket

2022-06-22 08:16:29

異步非阻塞框架

2021-02-27 16:08:17

Java異步非阻塞

2019-05-05 08:50:42

阻塞非阻塞BIO

2020-08-27 07:34:50

Zookeeper數(shù)據(jù)結(jié)構(gòu)

2017-03-01 16:40:12

Linux驅(qū)動技術(shù)設(shè)備阻塞

2024-05-27 00:00:00

AmpPHP非阻塞
點贊
收藏

51CTO技術(shù)棧公眾號